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ABOUT DEPARTMENT 

 Established in: 2002 

 Course offered  :  B.Tech in Computer Science and Engineering 

M.Tech in Computer Science and Engineering 

M.Tech in Cyber Security 

 Approved by AICTE New Delhi and Accredited by NAAC 

 Affiliated to A P J Abdul Kalam Technological University. 

 

DEPARTMENT VISION 

Producing  Highly  Competent, Innovative and Ethical Computer Science and Engineering Professionals 

to facilitate continuous technological advancement. 

 

DEPARTMENT MISSION 

1. To Impart Quality Education by creative Teaching Learning Process  

2. To Promote cutting-edge Research and Development Process to solve real world problems with 

emerging technologies.  

3. To Inculcate Entrepreneurship Skills among Students.  

4. To cultivate Moral and Ethical Values in their Profession.  

5.  

PROGRAMME EDUCATIONAL OBJECTIVES 

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering 

through lifelong learning. 

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages, 

Web Services, System Tools and Components as per needs and specifications. 

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by 

learning and applying new technologies. 

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills, 

Teamworkand leadership qualities. 
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PROGRAM OUTCOMES (POS) 

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

3. Design/development of solutions: Design solutions for complex engineering problems and 

design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of 

the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities 

with an understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess 

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant 

to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need 

for sustainable development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or leader 

in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give and 

receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member and 

leader in a team, to manage projects and in multidisciplinary environments. 

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest context of technological change. 

PROGRAM SPECIFIC OUTCOMES (PSO) 

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope. 
 

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality 

System Software Tools and Efficient Web Design Models with a focus on performance 
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optimization. 
 

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software 

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create 

innovative career path and for the socially relevant issues. 

 

COURSE OUTCOMES 
SUBJECT CODE: C406 

COURSE OUTCOMES 

C406.1 K3 Acquire knowledge on different methods for image acquisition, storage and 

representation in digital devices and computers 

C406.2 K1 Appreciate role of image transforms in representing, highlighting, and 

modifying image features 

C406.3 K5 Interpret the mathematical principles in digital image enhancement and 

apply them in spatial domain and frequency domain 

C406.4 K6 Apply various methods for segmenting image and identifying image 

components 

C406.5 K5 Summarize different reshaping operation on the image and their practical 

applications 

C406.6 K1 Identify image representation techniques that enables encoding and 

decoding images 

 

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES 
CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

C406.1 3 2 - -  - - - - - - - 

C406.2 3 - 3 3 2 - - - - - - - 

C406.3 3 - 2 3 3 - - - - - - - 

C4064 3 2 3 3 2 - - - - - - - 

C406.5 2 3 3 3 3 - - - - - 2 3 

C406.6 2 2 3 3 3 - - - - - 3 3 

C406 2.67 2.25 2.8 3 2.6 - - - - - 2.5 3 

 

 

CO’S PSO1 PSO2 PSO3 

C406.1 2 - 2 

C406.2 2 2 3 

C406.3 3 2 - 

C4064 - 2 3 

C406.5 - 3 2 

C406.6 - 2 3 

C406 2.33 2.2 2.6 

 

 

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1 
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SYLLABUS 
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QUESTION BANK 

 

 

MODULE I 

 

Q:NO: 

 

QUESTIONS 

 

CO 

 

KL 

 

PAGE NO: 

1 Define image processing CO1 K1 1 

2 Explain fundamental steps in image processing CO1 K2 1 

3 Explain Components of image processing system CO1 K2 4 

4 Explain how images are represented CO1 K3 7 

5 Differentiate spatial domain and frequency domain 

representations of image 

CO1 K4 8 

6 Illustrate the relationships among pixels with 

examples 

CO1 K4 11 

7 Explain distance measures CO1 K2 15 

 

MODULE II 

1 Explain the concept of image transforms CO2 K2 17 

2 Explain 2D linear transform CO2 K2 19 

3 Analyze the applications of image transforms CO2 K4 21 

4 Explain the concept of unitary matrix CO2 K1 22 

5 Differentiate unitary and orthogonal matrix CO2 K4 22 

6 Explain properties of 2D transforms CO2 K2 24 

 

MODULE III 

1 Explain gray level transformations CO3 K2 35 

2 Differentiate Log transforms and power-law 

transforms 

CO3 K4 36 

3 Explain contrast stretching in detail CO3 K2 37 

4 Explain gray level slicing CO3 K2 38 

5 Differentiate gray level slicing and bit plane slicing CO3 K4 38 
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6 Explain Gray level transformations in detail CO3 K2 41 

7 Explain the process of histogram equalization CO3 K2 43 

8 Explain the process of histogram matching CO3 K2 46 

9 Explain image subtraction CO3 K2 49 

10 Explain image averaging CO3 K2 50 

11 Explain how smoothing in  spatial filters are done CO3 K2 54 

12 Explain various masks used in image processing CO3 K2 57 

 

MODULE IV 

1 Explain the transfer function of Butterworth low pass 

filter 

 

CO4 K2 78 

2 Analyze the disadvantages of ideal low pass filter 

 

CO4 K3 74 

3 List out the  steps involved in frequency domain 

filtering 

 

CO4 K2 73 

4 Explain how edge detection is done 

 

CO4 K2 92 

5 With appropriate figure explain the steps involved in 

frequency domain filtering 

 

CO4 K2 74 

6 Explain ideal low pass filter ,Analyze the advantages 

and disadvantages of ideal low pass filter 

 

CO4 K2 74 

7 Explain un sharp masking and high boost filtering 

 

CO4 K2 83 

8 Differentiate the following image enhancement 

techniques in frequency domain 

i) Gaussian high pass filter 

ii) Butterworth high pass filter 

 

CO4 K4 82 
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MODULE V 

1 Differentiate various types of image segmentations 

 

CO5 K4 89 

2 Explain and illustrate How is a line detected? Give the 

mask to detect horizontal, vertical, + 45o slope and -45o 

slope line 

CO5 K3 93 

3 Write short notes on region splitting 

 

CO5 K3 106 

4 Differentiate various thresholding methods CO4 K4 98 

4 Explain region merging 

 

CO5 K2 106 

5 Explain region based segmentation in detail 

 

CO5 K3 103 

6 Differentiate any three similarity based segmentations 

 

CO5 K2 89 

7 Differentiate short note on Prewitt, Robert’s and Sobel 

edge detectors 
CO5 K4 91 

8 Explain different edge detection methods CO5 K3 92 

MODULE VI 

1 Differentiate two image representation schemes 
 

CO6 K4 108 

2 

3 

Briefly explain hit or miss transformation 

Differentiate various threshold based segmentation 
 

CO6 K3 113 

4 Explain boundary based representations 
 

CO6 K2 108 

5 Explain and illustrate Hit or miss transform morphological 

algorithm with an example 
 

CO6 K2 113 

6 Differentiate dilation and erosion with an example 

 

CO6 K4 118 

7 Morphological operations are important in image 

processing, justify your answers                                        
 

CO6 K2 116 
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APPENDIX 1 

 

CONTENT BEYOND THE SYLLABUS 

S:NO; TOPIC PAGE NO: 

1 Convolution Neural Networks (CNN) 126 

2 CNN Architecture 127 

 

 



MODULE 1

Introduction  to  Image  processing:  Fundamental  steps  in  image  processing;  Components  of  image 
processing system; Pixels;  coordinate  conventions;  Imaging Geometry;  Spatial  Domain;  Frequency 
Domain;  sampling  and  quantization;  Basic  relationship  between  pixels;  Applications  of  Image 
Processing. 

 What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f(x, y), where x and y are  spatial  (plane) 

coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level 

of the image at that point. When x, y, and the amplitude values of f are all finite, discrete quantities, we 

call the image a digital image. The field of digital image processing refers to processing digital images 

by means of a digital computer. Note that a digital image is composed of a finite number of elements, 

each of which has a particular location and value. These elements are referred to as picture elements, 

image elements, pels, and pixels. Pixel is the term most widely used to denote the basic elements of a 

digital image.

1.2  Fundamental Steps in Digital Image Processing
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Image acquisition is the first process, Before any video or image processing can commence an image 

must be captured by a camera and converted into a manageable entity. This is the process known as  

image acquisition.

Image enhancement is  among the simplest  and most appealing areas of digital  image processing. 

Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to 

highlight  certain  features  of  interest  in  an  image.  Example  :  enhancement,  when  we  increase  the 

contrast of an image  “it looks better.” It is important to keep in mind that enhancement is a very 

subjective area of image processing

Image restoration Unlike enhancement,  which is  subjective,  image restoration is  objective,  in  the 

sense that restoration techniques tend to be based on mathematical or probabilistic models of image 

degradation. Enhancement, on the other hand, is based on human subjective preferences regarding what 

constitutes a “good” enhancement result. 

Color image processing is an area that gained importance because of the significant increase in the use 

of digital images over the Internet. Color is used  as the basis for extracting features of interest in an 

image.

Wavelets are the foundation for representing images in various degrees of resolution. In particular, this 

material is used  for image data compression and for pyramidal representation, in which images are 

subdivided successively into smaller regions.

Compression, as the name implies, deals with techniques for reducing the storage required to save an 

image,  or  the  bandwidth  required  to  transmit  it.  Although  storage  technology  has  improved 

significantly over the past  decade,  the same cannot  be said for transmission capacity.  This is  true 

particularly in  uses  of  the Internet,  which are characterized by significant  pictorial  content.  Image 

compression is familiar (perhaps inadvertently) to most users of computers in the form of image file 

extensions, such as the jpg file extension used in the JPEG(Joint Photographic Experts Group) image 

compression standard.

Morphological  processing  deals with tools for extracting image components that  are useful  in the 

representation and description of shape. 

Segmentation  procedures  partition  an  image  into  its  constituent  parts  or  objects.  In general, 
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autonomous segmentation  is  one of  the most  difficult  tasks  in  digital  image processing.  A rugged 

segmentation procedure brings the process a long way toward successful solution of imaging problems 

that  require  objects  to  be identified individually.  On the  other  hand,  weak or  erratic  segmentation 

algorithms almost always guarantee eventual failure. 

Representation  and  description  almost  always  follow  the  output  of  a  segmentation  stage, which 

usually is raw pixel data, constituting either the boundary of a region (i.e., the set of pixels separating 

one image region from another) or all the points in the region itself. In either case, converting the data 

to a form suitable for computer processing is necessary. The first decision that must be made is whether 

the data  should be represented as a boundary or as a  complete region.  Boundary representation is 

appropriate  when  the  focus  is  on  external  shape  characteristics,  such  as  corners  and  inflections. 

Regional  representation is  appropriate  when the focus is  on internal  properties,  such as  texture or 

skeletal  shape.  In  some  applications,  these  representations  complement  each  other.  Choosing  a 

representation is only part of the solution for transforming raw data into a form suitable for subsequent 

computer  processing.  A method must  also  be specified  for  describing  the  data  so that  features  of 

interest are highlighted. Description, also called feature selection, deals with extracting attributes that 

result in some quantitative information of interest or are basic for differentiating one class of objects 

from another.

Recognition is the process that assigns a label (e.g., “vehicle”) to an object based on its descriptors.

Knowledge base : Knowledge about a problem domain is coded into an image processing system in the 

form of a knowledge database. This knowledge may be as simple as detailing regions of an image 

where  the  information  of  interest  is  known to  be  located,  thus  limiting  the  search  that  has  to  be 

conducted in seeking that information. The knowledge base also can be quite complex, such as an 

interrelated list of all major possible defects in a materials inspection problem or an image database 

containing  high-resolution  satellite  images  of  a  region  in  connection  with  change-detection 

applications. In addition to guiding the operation of each processing module, the knowledge base also 

controls the interaction between modules. This distinction is made in Fig.  by the use of double headed 

arrows between the processing modules and the knowledge base, as opposed to single-headed arrows 

linking the processing modules. 
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 Components of an Image Processing System

The function of each component is discussed in the following paragraphs, starting with image sensing. 

With reference to sensing, two elements are required to acquire digital images. The first is a physical 

device that is sensitive to the energy radiated by the object we wish to image. The second, called a 

digitizer, is a device for converting the output of the physical sensing device into digital form. For 

instance,  in  a  digital  video  camera,  the  sensors  produce  an  electrical  output  proportional  to  light 

intensity. The digitizer converts these outputs to digital data.

Specialized image processing hardware usually consists of the digitizer just mentioned, plus hardware 

that  performs other  primitive  operations,  such as  an  arithmetic  logic  unit  (ALU),  which  performs 

arithmetic and logical operations in parallel on entire images. One example of how an ALU is used is in 

averaging images as quickly as they are digitized, for the purpose of noise reduction. This type of 

hardware sometimes is called a front-end subsystem, and its most

distinguishing characteristic is speed. In other words, this unit performs functions that require fast data 

throughputs (e.g., digitizing and averaging video images at 30 frames_s) that the typical main computer 

cannot handle.
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The computer in an image processing system is a general-purpose computer and can range from a PC 

to a supercomputer. In dedicated applications, sometimes specially designed computers are used to 

achieve a required level of performance, but our interest here is on general-purpose image processing 

systems. In these systems, almost any well-equipped PC-type machine is suitable for offline image 

processing tasks.

Software  for image processing consists of specialized modules that perform specific tasks. A well-

designed package also includes the capability for the user to write code that, as a minimum, utilizes the 

specialized modules. More sophisticated software packages allow the integration of those modules and 

general- purpose software commands from at least one computer language.

Mass storage capability is a must in image processing applications.An image of size 1024*1024 pixels, 

in which the intensity of each pixel is an 8-bit quantity, requires one megabyte of storage space if the 

image  is  not  compressed.  When  dealing  with  thousands,  or  even  millions,  of  images,  providing 

adequate  storage  in  an  image  processing  system  can  be  a  challenge.  Digital  storage  for  image 

processing  applications  falls  into  three  principal  categories:  (1)  short  term storage  for  use  during 

processing,  (2)  on-line  storage  for  relatively  fast  recall,  and (3)  archival  storage,  characterized  by 

infrequent access. Storage is measured in bytes (eight bits), Kbytes (one thousand bytes), Mbytes (one 

million bytes), Gbytes (meaning giga, or one billion, bytes), and T bytes (meaning tera, or one trillion, 

bytes).

Image displays in use today are mainly color (preferably flat screen) TV monitors. Monitors are driven 

by the outputs of image and graphics display cards that are an integral part of the computer system. 

Seldom are there requirements for image display applications that cannot be met  by display cards 

available commercially as part of the computer system. In some cases, it is necessary to have stereo 

displays, and these are implemented in the form of headgear containing two small displays embedded 

in goggles worn by the user.

Hardcopy  devices for recording images include laser printers, film cameras, heat-sensitive devices, 

inkjet units, and digital units, such as optical and CD-ROM disks. Film provides the highest possible 

resolution, but paper is the obvious medium of choice for written material. For presentations, images 

are displayed on film transparencies or in a digital medium if image projection equipment is used. The 
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latter approach is gaining acceptance as the standard for image presentations.

Networking  is almost a default function in any computer system in use today. Because of the large 

amount of data inherent in image processing applications, the key consideration in image transmission 

is bandwidth. This is improving quickly as a result of optical fiber and other broadband technologies.

Image Sampling and Quantization

To create  a  digital  image,  we  need  to  convert  the  continuous  sensed  data  into  digital  form.  This 

involves  two processes:  sampling and  quantization.  A continuous  image,  f(x,  y),  that  we want  to 

convert to digital form. An image may be continuous with respect to the x- and y-coordinates, and also 

in amplitude. To convert it to digital form, we have to sample the function in both coordinates and in 

amplitude. Digitizing the coordinate values is called sampling. Digitizing the amplitude values is called 

quantization.
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The one-dimensional function shown in Fig is a plot of amplitude (gray level) values of the continuous 

image along the line segment  AB. The random variations  are  due to  image noise.  To sample this 

function, we take equally spaced samples along line AB, The location of each sample is given by a  

vertical tick mark in the bottom part of the figure. The samples are shown as small  white squares 

superimposed on the function. The set of these discrete locations gives the sampled function. However, 

the values of the samples still span (vertically) a continuous range of gray-level values. In order to form 

a digital function, the gray-level values also must be converted (quantized) into discrete quantities. The 

right side gray-level scale divided into eight discrete levels, ranging from black to white. The vertical  

tick marks indicate the specific value assigned to each of the eight gray levels. The continuous gray 

levels are quantized simply by assigning one of the eight discrete gray levels to each sample.  The 

assignment is made depending on the vertical proximity of a sample to a vertical tick mark. The digital  

samples resulting from both sampling and quantization.

Co-ordinate conventions and  Representation of  Digital Images: 

The result of sampling and quantization is matrix of real numbers. Assume that an image  f(x,y) is 

sampled so that the resulting digital image has M rows and N Columns. The values  of the coordinates 

(x,y) now become discrete quantities thus the value of the coordinates at  orgin become (x,y) =(o,o) 

The next Coordinates value along the first signify the image along  the first row. It does not mean that  

these are the actual values of physical coordinates when the image was sampled. Thus the right side of 

the matrix represents a digital element, pixel or pel. Co-ordinate convention used to represent digital 
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image is shown in following figure.

Above co-ordiante conventions help us to represent an MXN image in the following form.

Gray level values

Due to processing storage and hardware consideration, the number gray levels typically is an integer 

power of 2. 

L=2k 

Then, the number, b, of bites required to store a digital image is B=M *N* k 

When M=N, the equation become b=N^2  *k 

When an image can have 2k gray levels, it is referred to as “k- bit”. An image with 256 possible gray 

levels is called an “8- bit image” (256=28).

 

Spatial domain

The term spatial domain refers to the image plane itself and approaches in this categories are based on 

direct manipulation of pixel in an image. Spatial domain process are denoted by the  expression 

g(x,y)=T[f(x,y)] 

Where f(x,y)- input image, T- operator on f, defined over some neighborhood of f(x,y) and g(x,y)-
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processed image The neighborhood of a point (x,y) can be explain by using as square or rectangular 

sub image area centered at (x,y). The center of sub image is moved from pixel to pixel starting at the  

top left corner. The operator T is applied to each location (x,y) to find the output g at that location . The  

process utilizes only the pixel in the area of the image spanned by the neighborhood. 

Frequency domain

An image is a signal that's perceived in 2 spatial dimensions: height and width.  When 

analyzing images(or signals), it's often helpful to represent it in a form other than spatial 

extent ( or the time domain).  If you perform a fourier transform on the image (signal), 

you can represent the signal another way, in a frequency domain, where the signal has 

been  decomposed  into  a  series  of  constituent  trigonometric  functions.  This 

representation allows you to see, measure, and modify the signal in a different way than 

is possible in the spatial domain. The inverse Fourier transform converts the frequency-

domain function back to the spatial domain. In this domain, pixel location is represented 

by its x- and y-frequencies and its value is represented by an amplitude. 

From the context of image processing, it is to study the change in pixel values in the 
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image.  These  change  in  frequency  is  a  characteristic  of  change  in  geometry  of  the 

image(spatial distribution). Edges reflects high frequency components, smooth regions 

have low frequency components.

Difference between spatial domain and frequency domain 
Spatial domain :
- Deal with images as it is. 
- The value of the pixels of the image change with respect to scene. 
Frequency domain :
- Deal with the rate at which the pixel values are changing in spatial domain

10
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2.5 Some Basic Relationships between Pixels 
 
Here, we consider some important relationships between pixels in 
a digital image. 
 
Neighbours of a Pixel 
 
A pixel p at coordinates ( , )x y  has four horizontal and vertical 
neighbours: 
 

( 1, ),  ( 1, ),  ( , 1),  ( , 1)x y x y x y x y+ − + − . 
 

This set of pixels is called the 4-neighbuors of p, and denoted by 
4( )N p . 

 
The four diagonal neighbours of p are 
 

( 1, 1),  ( 1, 1),  ( 1, 1),  ( 1, 1)x y x y x y x y+ + + − − + − − , 
 

and are denoted by ( )DN p . 
 
Adjacency, Connectivity, Regions, and Boundaries 
 
Let V  be the set of intensity values used to define adjacency. In a 
binary image, { }1V = if we are referring to adjacency of pixels 
with value 1 .   
 
In a gray-scale image, set V  typically contains more elements. 
For example, with a range of possible intensity values 0  to 255 , 
set V  could be any subset of these 256  values. 
 
Consider three types of adjacency: 

 

(a) 4-adjacency. Two pixels p and q with values from V  are 
4-adjacency if q is in the set 4( )N p . 

11
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(b) 8-adjacency. Two pixels p and q with values from V  are 
8-adjacency if q is in the set 8( )N p . 

 

(c) m-adjacency (mixed adjacency). Two pixels p and q with 
values from V  are m -adjacency if 
(i) q is in the 4( )N p , or 
(ii)  q is in the ( )DN p and the set 4 4( ) ( )N p N q∩  has no 

pixels whose values are from V . 
 

Mixed adjacency is a modified of 8-adjacency. 
 

 
 

For example, consider the arrangement shown in Figure 2.25 (a) 
for { }1V = . 
 
The three pixels at the top of Figure 2.25 (b) show ambiguous 8-
adjacency, which is removed by using m-adjacency, as shown in 
Figure 2.25 (c). 
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A path from pixel p with coordinates ( , )x y  to pixel q with 

coordinates ( , )s t  is a sequence of distinct pixels with coordinates 
 

0 0 1 1( , ),  ( , ),  , ( , )n nx y x y x y⋯ , 
 

where 0 0( , ) ( , )x y x y= , ( , ) ( , )n nx y s t= , and pixels ( , )i ix y  and 

1 1( , )i ix y− − are adjacent for 1 i n≤ ≤ . n  is the length of the path. 
If 0 0( , ) ( , )n nx y x y= , the path is a closed path. 
 
We can define 4-, 8-, or m-paths depending on the type of adjacency. 
The path shown in Figure 2.25 (b) between the top right and bottom 
right points are 8-paths, and the path in Figure 2.25 (c) is an m-path. 
 
Let S  represent a subset of pixels in an image. Two pixels p and q 
are said to be connected in S  if there exists a path between them 
consisting entirely of pixels inS . If it only has one connected 
component, set S  is called a connected set. 
 
Let R  be a subset of pixels in an image.  We call R  a region of the 
image if R  is a connected set. 
 
Two regions, iR  and jR  are said to be adjacent if their union forms 
a connected set. Regions that are not adjacent are said to be disjoint. 
 
The two regions (of 1s) in Figure 2.25 (d) are adjacent only if 8-
adjacency is used. 
 
Suppose that an image contains K disjoint regions, kR , 1,2,...,k K= , 
and none of which touches the image border. Let uR  denote the union 
of all the K  regions, and let ( )cuR  denote its complement. We call all 

the points in uR  the foreground, and all the points in ( )cuR  the 
background of the image. 
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The boundary (also called the border or contour) of a regionR  is the 
set of points that are adjacent to points in the complement ofR . 
 
Again, we must specify the connectivity being used to define 
adjacency. For example, the point circled in Figure 2.25 (e) is not a 
member of the border of the 1-valued region if 4-connectivity is 
used between the region and its background. 
 
As a rule, adjacency between points in a region and its background 
is defined in terms of 8-adjacency to handle situations like above. 
 
The preceding definition is referred to as the inner border of the 
region to distinguish it from its outer border, which is the 
corresponding border in the background. 
 
This issue is important in the development of border-following 
algorithms. Such algorithms usually are formulated to follow the 
outer boundary in order to guarantee that the result will form a 
closed path. 
 
For example, the inner border of the 1-valued region in Figure 2.25 
(f) is the region itself. 
 
If R  happens to be an entire image, then its boundary is defined as 
the set of pixels in the first and last rows and columns of the image. 
This extra definition is required because an image has no neighbours 
beyond its border. 
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Distance Measures 
 
For pixelsp , q , and z , with coordinates ( , )x y , ( , )s t , and ( , )v w ,   
D is a distance function or metric if 
 

(a)  ( , ) 0D p q ≥  ( ( , ) 0D p q =  iff p q= ) 
 

(b) ( , ) ( , )D p q D q p= , and 
 

(c)  ( , ) ( , ) ( , )D p z D p q D q z≤ +  . 
 

The Euclidean distance between p  and q  is defined as 
 

[ ]
1/22 2( , ) ( ) ( )eD p q x s y t= − + − .  (2.5-1) 

 

The 4D distance (called the city-block distance) between p  and q  is 
defined as 
 

4( , ) | | | |D p q x s y t= − + − .   (2.5-2) 
 

Example: the pixels with 4D  distance 2≤  from ( , )x y  form the 
following contours of constant distance: 
 

        2

    2   1   2

2   1   0   1   2

    2   1   2

        2

 

 

The pixels with 4 1D =  are the 4-neighbuors of ( , )x y . 
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The 8D distance (called the chessboard distance) between p  and q  
is defined as 
 

8( , ) max(| |,| |)D p q x s y t= − − .  (2.5-3) 
 

Example: the pixels with 8D  distance 2≤  from ( , )x y  form the 
following contours of constant distance: 
 

2   2   2   2   2

2   1   1   1   2

2   1   0   1   2

2   1   1   1   2

2   2   2   2   2

 

 

The pixels with 8 1D =  are the 8-neighbuors of ( , )x y . 
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Digital Image Processing                    UNIT III 
 

 

Image enhancement in spatial domain 
 

Basic Gray Level Transformations: 
 

The study of image enhancement techniques is done by discussing gray-level transformation 

functions. These are among the simplest of all image enhancement techniques. The values of 

pixels, before and after processing, will be denoted by r and s, respectively. As indicated in the 

previous section, these values are related by an expression of the form s=T(r), where T is a 

transformation that maps a pixel value r into a pixel value s. Since we are dealing with digital 

quantities, values of the transformation function typically are stored in a one-dimensional array 

and the mappings from r to s are implemented via table lookups. For an 8-bit environment, a 

lookup table containing the values of T will have 256 entries. As an introduction to gray-level 

transformations, consider Fig. 1.1, which shows three basic types of functions used frequently for 

image enhancement: linear (negative and identity transformations), logarithmic (log and inverse-

log transformations), and power-law (nth power and nth root transformations).The identity 

function is the trivial case in which output intensities are identical to input intensities. It is 

included in the graph only for completeness. 

 
Image Negatives: 

 
The negative of an image with gray levels in the range [0, L-1] is obtained by using the negative 

transformation shown in Fig.1.1, which is given by the expression 
 

s = L - 1 - r. 
 

Reversing the intensity levels of an image in this manner produces the equivalent of a 

photographic negative. This type of processing is particularly suited for enhancing white or gray 

detail embedded in dark regions of an image, especially when the black areas are dominant in size. 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                       Fig.1.1 Some basic gray-level transformation functions used for image enhancement 
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Log Transformations: 
 

The general form of the log transformation shown in Fig.1.1 is  
 
 
 

 

where c is a constant, and it is assumed that r ≥ 0.The shape of the log curve in Fig. 1.1 shows that 

this transformation maps a narrow range of low gray-level values in the input image into a wider 

range of output levels.The opposite is true of higher values of input levels.We would use a 

transformation of this type to expand the values of dark pixels in an image while compressing the 

higher-level values.The opposite is true of the inverse log transformation. 

 

Any curve having the general shape of the log functions shown in Fig. 1.1 would accomplish this 

spreading/compressing of gray levels in an image. In fact, the power-law transformations 

discussed in the next section are much more versatile for this purpose than the log transformation. 

However, the log function has the important characteristic that it compresses the dynamic range of 

images with large variations in pixel values. A classic illustration of an application in which pixel 

values have a large dynamic range is the Fourier spectrum. At the moment,we are concerned only 

with the image characteristics of spectra. It is not unusual to encounter spectrum values that range 

from 0 to or higher.While processing numbers such as these presents no problems for a computer, 

image display systems generally will not be able to reproduce faithfully such a wide range of 

intensity values. The net effect is that a significant degree of detail will be lost in the display of a 

typical Fourier spectrum. 

 

Power-Law Transformations: 
 

Power-law transformations have the basic form  
 
 

 

where c and g are positive constants. Sometimes Eq. is written as  
 

to account for an offset (that is, a measurable output when the input is zero).However, offsets 

typically are an issue of display calibration and as a result they are normally ignored in Eq. Plots 

of s versus r for various values of g are shown in Fig. 1.2. As in the case of the log transformation, 

power-law curves with fractional values of g map a narrow range of dark input values into a wider 

range of output values,with the opposite being true for high-er values of input levels. Unlike the 

log function, however, we notice here a family of possible transformation curves obtained simply 

by varying γ. As expected, we see in Fig.1.2 that curves generated with values of g>1 have exactly 

the opposite effect as those generated with values of g<1. Finally, we note that Eq. reduces to the 

identity transformation when c = γ = 1. A variety of devices used for image capture, printing, and 

display respond according to a power law.By convention, the exponent in the power-law equation 

is referred to as gamma. The proces used to correct this power-law response phenomena is called 

gamma correction. For example, cathode ray tube (CRT) devices have an intensity-to-voltage 

response that is a power function, with exponents varying from approximately 1.8 to 2.5.With 

reference to the curve for g=2.5 in Fig.1.2, we see that such display systems would tend to 

produce images that are darker than intended. 
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Fig.1.2 Plots of the equation  for various values of  (c=1 in all cases). 
 

Piecewise-Linear Transformation Functions: 
 

The principal advantage of piecewise linear functions over the types of functions we have 

discussed above is that the form of piecewise functions can be arbitrarily complex. In fact, as we 

will see shortly, a practical implementation of some important transformations can be formulated 

only as piecewise functions. The principal disadvantage of piecewise functions is that their 

specification requires considerably more user input. 

 

Contrast stretching: 
 

One of the simplest piecewise linear functions is a contrast-stretching transformation. Low-

contrast images can result from poor illumination, lack of dynamic range in the imaging sensor, or 

even wrong setting of a lens aperture during image acquisition.The idea behind contrast stretching 

is to increase the dynamic range of the gray levels in the image being processed. 
 

Figure 1.3 (a) shows a typical transformation used for contrast stretching. 
 

The locations of points (r1 , s1) and (r2 , s2) control the shape of the transformation 
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Fig.1.3 Contrast Stretching (a) Form of Transformation function (b) A low-contrast image 

(c) Result of contrast stretching (d) Result of thresholding. 
 

function. If r1=s1 and r2=s2, the transformation is a linear function that produces no changes in 

gray levels. If r1=r2,s1=0 and s2=L-1, the transformation becomes a thresholding function that 

creates a binary image, as illustrated in Fig. 1.3 (b). Intermediate values of (r1 , s1) and (r2 , s2) 

produce various degrees of spread in the gray levels of the output image, thus affecting its 

contrast. In general, r1 ≤ r2 and s1 ≤ s2 is assumed so that the function is single valued and 

monotonically increasing.This condition preserves the order of gray levels, thus preventing the 

creation of intensity artifacts in the processed image. 
 

Figure 1.3 (b) shows an 8-bit image with low contrast. Fig. 1.3(c) shows the result of contrast 

stretching, obtained by setting (r1 , s1) = (rmin , 0) and (r2 , s2) = (rmax , L-1) where rmin and rmax 

denote the minimum and maximum gray levels in the image, respectively.Thus, the transformation 

function stretched the levels linearly from their original range to the full range [0, L-1]. Finally, 

Fig. 1.3 (d) shows the result of using the thresholding function defined previously,with r1 = r2 = 

m, the mean gray level in the image.The original image on which these results are based is a 

scanning electron microscope image of pollen,magnified approximately 700 times. 
 
 

Gray-level slicing: 
 

Highlighting a specific range of gray levels in an image often is desired. Applications include 

enhancing features such as masses of water in satellite imagery and enhancing flaws in X-ray 

images.There are several ways of doing level slicing, but most of them are variations of two basic 

themes.One approach is to display a high value for all gray levels in the range of interest and a low 

value for all other gray levels.This transformation, shown in Fig. 1.4 (a), produces a binary 

image.The second approach, based on the transformation shown in Fig. 1.4 (b), brightens the 

desired range of gray levels but preserves the background and gray-level tonalities in the image. 

Figure 1.4(c) shows a gray-scale image, and Fig. 1.4 (d) shows the result of using the 

transformation in Fig. 1.4 (a).Variations of the two transformations shown in Fig. 1.4 are easy to 

formulate. 
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Fig.1.4 (a) This transformation highlights range [A, B] of gray levels and reduce all others to 

a constant level (b) This transformation highlights range [A, B] but preserves all other levels 

(c) An image (d) Result of using the transformation in (a). 

Bit-plane slicing: 
 

Instead of highlighting gray-level ranges, highlighting the contributionmade to total image 

appearance by specific bits might be desired. Suppose that each pixel in an image is represented 

by 8 bits. Imagine that the image is composed of eight 1-bit planes, ranging from bit-plane 0 for 

the least significant bit to bit plane 7 for the most significant bit. In terms of 8-bit bytes, plane 0 

 

contains all the lowest order bits in the bytes comprising the pixels in the image and plane 7 

contains all the high-order bits.Figure 1.5 illustrates these ideas, and Fig. 1.7 shows the various bit 

planes for the image shown in Fig.1.6 . Note that the higher-order bits (especially the top four) 

contain themajority of the visually significant data.The other bit planes contribute tomore subtle 

details in the image. Separating a digital image into its bit planes is useful for analyzing the 

relative importance played by each bit of the image, a process that aids in determining the 

adequacy of the number of bits used to quantize each pixel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1.5 Bit-plane representation of an 8-bit image. 
 
 

In terms of bit-plane extraction for an 8-bit image, it is not difficult to show that the (binary) 

image for bit-plane 7 can be obtained by processing the input image with a thresholding gray-level 

transformation function that (1) maps all levels in the image between 0 and 127 to one level (for 

example, 0); and (2) maps all levels between 129 and 255 to another (for example, 255). 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                              Fig.1.6 An 8-bit fractal image 
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Fig.1.7 The eight bit planes of the image in Fig.1.6. The number at the bottom, right of each 

image identifies the bit plane. 

 
 

                    objective of image enhancement. Define spatial domain.  

The term spatial domain refers to the aggregate of pixels composing an image. Spatial domain 

methods are procedures that operate directly on these pixels. Spatial domain processes will be 

denoted by the expression 
 
 
 
 
 

where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator on f, defined 

over some neighborhood of (x, y). In addition,T can operate on a set of input images, such as 

performing the pixel-by-pixel sum of K images for noise reduction. 
 

The principal approach in defining a neighborhood about a point (x, y) is to use a square or 

rectangular subimage area centered at (x, y), as Fig.2.1 shows. The center of the subimage is 

moved from pixel to pixel starting, say, at the top left corner. The operator T is applied at each 

location (x, y) to yield the output, g, at that location.The process utilizes only the pixels in the area 

of the image spanned by the neighborhood. 
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Fig.2.1 A 3*3 neighborhood about a point (x, y) in an image. 
 

Although other neighborhood shapes, such as approximations to a circle, sometimes are used, 

square and rectangular arrays are by far the most predominant because of their ease of 

implementation. The simplest form of T is when the neighborhood is of size 1*1 (that is, a single 

pixel). In this case, g depends only on the value of f at (x, y), and T becomes a gray-level (also 

called an intensity or mapping) transformation function of the form 
 
 
 
 
 

where, for simplicity in notation, r and s are variables denoting, respectively, the gray level of f(x, 

y) and g(x, y) at any point (x, y). For example, if T(r) has the form shown in Fig. 2.2(a), the effect 

of this transformation would be to produce an image of higher contrast than the original by 

darkening the levels below m and brightening the levels above m in the original image. In this 

technique, known as contrast stretching, the values of r below m are compressed by the 

transformation function into a narrow range of s, toward black.The opposite effect takes place for 

values of r above m. In the limiting case shown in Fig. 2.2(b), T(r) produces a two-level (binary) 

image. A mapping of this form is called a thresholding function. Some fairly simple, yet powerful, 

processing approaches can be formulated with gray-level transformations. Because enhancement 

at any point in an image depends only on the gray level at that point, techniques in this category 

often are referred to as point processing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2.2 Graylevel transformation functions for contrast enhancement. 
 
 

 

Larger neighborhoods allow considerably more flexibility. The general approach is to use a 

function of the values of f in a predefined neighborhood of (x, y) to determine the value of g at (x, 

y).One of the principal approaches in this formulation is based on the use of so-called masks 

 

(also referred to as filters, kernels, templates, or windows). Basically, a mask is a small (say, 3*3) 

2-D array, such as the one shown in Fig. 2.1, in which the values of the mask coefficients 

determine the nature of the process, such as image sharpening. 

 

Histogram of a digital image.  
 

Histogram Processing: 
 

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete function h(rk) 
 

= (nk), where rk is the kth gray level and nk is the number of pixels in the image having gray level 

rk. It is common practice to normalize a histogram by dividing each of its values by the total 

number of pixels in the image, denoted by n. Thus, a normalized histogram is given by  
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for k=0,1,…… .,L-1. Loosely speaking, p(rk) gives an estimate of the probability of occurrence  

of gray level rk. Note that the sum of all components of a normalized histogram is equal to 1. 
 

Histograms are the basis for numerous spatial domain processing techniques.Histogram 

manipulation can be used effectively for image enhancement. Histograms are simple to calculate 

in software and also lend themselves to economic hardware implementations, thus making them a 

popular tool for real-time image processing. 
 

As an introduction to the role of histogram processing in image enhancement, consider Fig. 3, 

which is the pollen image shown in four basic gray-level characteristics: dark, light, low contrast, 

and high contrast.The right side of the figure shows the histograms corresponding to these images. 

The horizontal axis of each histogram plot corresponds to gray level values, rk. 
 

The vertical axis corresponds to values of h(rk) = nk or p(rk) = nk/n if the values are 

normalized.Thus, as indicated previously, these histogram plots are simply plots of h(rk) = nk 

versus rk or p(rk) = n k/n versus rk. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.3 Four basic image types: dark, light, low contrast, high contrast, and their 

corresponding histograms. 

 

We note in the dark image that the components of the histogram are concentrated on the low 

(dark) side of the gray scale. Similarly, the components of the histogram of the bright image are 

biased toward the high side of the gray scale.An image with low contrast has a histogram that will 

be narrow and will be centered toward the middle of the gray scale. For a monochrome image this 

implies a dull,washed-out gray look. Finally,we see that the components of the histogram in the 

high-contrast image cover a broad range of the gray scale and, further, that the distribution of 

pixels is not too far from uniform,with very few vertical lines being much higher than the others. 

Intuitively, it is reasonable to conclude that an image whose pixels tend to occupy the entire range 

of possible gray levels and, in addition, tend to be distributed uniformly,will have an appearance 

of high contrast and will exhibit a large variety of gray tones. The net effect will be an image that 

shows a great deal of gray-level detail and has high dynamic 
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range. It will be shown shortly that it is possible to develop a transformation function that can 

automatically achieve this effect, based only on information available in the histogram of the input 

image. 

 

 

Histogram equalization. 
 

Histogram Equalization: 
 

Consider for a moment continuous functions, and let the variable r represent the gray levels of the 

image to be enhanced. We assume that r has been normalized to the interval [0, 1], with r=0 

representing black and r=1 representing white. Later, we consider a discrete formulation and allow 

pixel values to be in the interval [0, L-1]. For any r satisfying the aforementioned conditions, we 

focus attention on transformations of the form 
 
 
 
 

that produce a level s for every pixel value r in the original image. For reasons that will become 

obvious shortly, we assume that the transformation function T(r) satisfies the following 

conditions: 
 

(a) T(r) is single-valued and monotonically increasing in the interval 0 ≤ r ≤ 1; and 
 

(b) 0 ≤ T(r) ≤ 1 for 0 ≤ r ≤ 1. 
 

The requirement in (a) that T(r) be single valued is needed to guarantee that the inverse 

transformation will exist, and the monotonicity condition preserves the increasing order from 

black to white in the output image.A transformation function that is not monotonically increasing 

could result in at least a section of the intensity range being inverted, thus producing some 

inverted gray levels in the output image. Finally, condition (b) guarantees that the output gray 

levels will be in the same range as the input levels. Figure 4.1 gives an example of a 

transformation function that satisfies these two conditions.The inverse transformation from s back 

to r is denoted 
 
 
 
 
 

It can be shown by example that even if T(r) satisfies conditions (a) and (b), it is possible that the 

corresponding inverse T
-1

 (s) may fail to be single valued. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

. 
 

Fig.4.1 A gray-level transformation function that is both single valued and monotonically 

increasing. 

 

43



 
 

The gray levels in an image may be viewed as random variables in the interval [0, 1].One of the 
most fundamental descriptors of a random variable is its probability density function (PDF).Let 

pr(r) and ps(s) denote the probability density functions of random variables r and s, 

respectively,where the subscripts on p are used to denote that pr and ps are different functions.A 

basic result from an elementary probability theory is that, if pr(r) and T(r) are known and T
-1

 (s) 

satisfies condition (a), then the probability density function ps(s) of the transformed variable s can 

be obtained using a rather simple formula:  
 
 
 
 

 

Thus, the probability density function of the transformed variable, s, is determined by the gray-

level PDF of the input image and by the chosen transformation function. A transformation 

function of particular importance in image processing has the form 
 
 
 
 
 

 

where w is a dummy variable of integration.The right side of Eq. above is recognized as the 

cumulative distribution function (CDF) of random variable r. Since probability density functions 

are always positive, and recalling that the integral of a function is the area under the function, it 

follows that this transformation function is single valued and monotonically increasing, and, 

therefore, satisfies condition (a). Similarly, the integral of a probability density function for 

variables in the range [0, 1] also is in the range [0, 1], so condition (b) is satisfied as well. 

Given transformation function T(r),we find ps(s) by applying Eq. We know from basic calculus 

(Leibniz’s rule) that the derivative of a definite integral with respect to its upper limit is simply the 

integrand evaluated at that limit. In other words, 
 
 
 
 
 
 
 
 
 
 
 
 

Substituting this result for dr/ds, and keeping in mind that all probability values are positive, 

yields 
 
 
 
 
 
 
 
 
 
 

 

Because ps(s) is a probability density function, it follows that it must be zero outside the interval 

[0, 1] in this case because its integral over all values of s must equal 1.We recognize the form of 

ps(s) as a uniform probability density function. Simply stated, we have demonstrated that 

performing the transformation function yields a random variable s characterized by a uniform 

probability density function. It is important to note from Eq. discussed above that T(r) depends on 

pr(r), but, as indicated by Eq. after it, the resulting ps(s) always is uniform, independent of the 

form of pr(r). For discrete values we deal with probabilities and summations instead of probability 

density functions and integrals. The probability of occurrence of gray level r in an image is 

approximated by 
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where, as noted at the beginning of this section, n is the total number of pixels in the image, nk is 

the number of pixels that have gray level rk, and L is the total number of possible gray levels in 

the image.The discrete version of the transformation function given in Eq. is 
 
 
 
 
 
 
 
 
 
 
 

Thus, a processed (output) image is obtained by mapping each pixel with level rk in the input 

image into a corresponding pixel with level sk in the output image. As indicated earlier, a plot of 

pr (rk) versus rk is called a histogram. The transformation (mapping) is called histogram 

equalization or histogram linearization. It is not difficult to show that the transformation in Eq. 

satisfies conditions (a) and (b) stated previously. Unlike its continuos counterpart, it cannot be 

proved in general that this discrete transformation will produce the discrete equivalent of a 

uniform probability density function, which would be a uniform histogram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.4.2 (a) Images from Fig.3 (b) Results of histogram equalization. (c) Corresponding 

histograms. 
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The inverse transformation from s back to r is denoted by  
 
 
 
 
 

Histogram specification. 
 

Histogram Matching (Specification): 
 

Histogram equalization automatically determines a transformation function that seeks to produce 

an output image that has a uniform histogram.When automatic enhancement is desired, this is a 

good approach because the results from this technique are predictable and the method is simple to 

implement. In particular, it is useful sometimes to be able to specify the shape of the histogram 

that we wish the processed image to have.The method used to generate a processed image that has 

a specified histogram is called histogram matching or histogram specification. 
 

Development of the method: 
 

Let us return for a moment to continuous gray levels r and z (considered continuous random 

variables), and let pr(r) and pz(z) denote their corresponding continuos probability density 

functions. In this notation, r and z denote the gray levels of the input and output (processed) 

images, respectively.We can estimate pr(r) from the given input image, while pz(z) is the specified 

probability density function that we wish the output image to have. 
 

Let s be a random variable with the property  
 
 
 
 

 

where w is a dummy variable of integration.We recognize this expression as the continuos version 

of histogram equalization. Suppose next that we define a random variable z with the property 
 
 
 
 
 
 
 
 
 
 
  

where t is a dummy variable of integration. It then follows from these two equations that 

G(z)=T(r) and, therefore, that z must satisfy the condition 
 
 
 
 
 

 

The transformation T(r) can be obtained once pr(r) has been estimated from the input image. 

Similarly, the transformation function G(z) can be obtained because pz(z) is given. Assuming that 

G
-1

 exists and that it satisfies conditions (a) and (b) in the histogram equalization process, the 

above three equations show that an image with a specified probability density function can be 

obtained from an input image by using the following procedure: 
 

(1) Obtain the transformation function T(r). 
 

(2) To obtain the transformation function G(z). 
 

(3) Obtain the inverse transformation function G
-1

 
 

(4) Obtain the output image by applying above Eq. to all the pixels in the input image. 
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The result of this procedure will be an image whose gray levels, z, have the specified probability 

density function pz(z). Although the procedure just described is straightforward in principle, it is 

seldom possible in practice to obtain analytical expressions for T(r) and for G
-1.

 Fortunately, this 

problem is simplified considerably in the case of discrete values.The price we pay is the same as 

in histogram equalization,where only an approximation to the desired histogram is achievable. In 

spite of this, however, some very useful results can be obtained even with crude approximations.  
 
 
 
 
 
 
 
 
 
 

 

where n is the total number of pixels in the image, nj is the number of pixels with gray level rj, and 

L is the number of discrete gray levels. Similarly, the discrete formulation is obtained from the 

given histogram pz (zi), i=0, 1, 2,……, L-1, and has the form 
 
 
 
 
 
 
 
 

As in the continuos case, we are seeking values of z that satisfy this equation.The variable vk was 

added here for clarity in the discussion that follows. Finally, the discrete version of the above Eqn. 

is given by 
 
 
 
 

 

Or  
 
 
 
 
 

 

Implementation: 
 

We start by noting the following: (1) Each set of gray levels {rj} , {sj}, and {zj}, j=0, 1, 2, p , L-1, 

is a one-dimensional array of dimension L X 1. (2) All mappings from r to s and from s to z are 

simple table lookups between a given pixel value and these arrays. (3) Each of the elements of 

these arrays, for example, sk, contains two important pieces of information: The subscript k 

denotes the location of the element in the array, and s denotes the value at that location. (4) We 

need to be concerned only with integer pixel values. For example, in the case of an 8-bit image, 

L=256 and the elements of each of the arrays just mentioned are integers between 0 and 255.This 

implies that we now work with gray level values in the interval [0, L-1] instead of the normalized 

interval [0, 1] that we used before to simplify the development of histogram processing 

techniques. 
 

In order to see how histogram matching actually can be implemented, consider Fig. 5(a), ignoring 

for a moment the connection shown between this figure and Fig. 5(c). Figure 5(a) shows a 

hypothetical discrete transformation function s=T(r) obtained from a given image. The first gray 

level in the image, r1 , maps to s1 ; the second gray level, r2 , maps to s2 ; the kth level rk maps to 

sk; and so on (the important point here is the ordered correspondence between these values). Each 

value sj in the array is precomputed, so the process of mapping simply uses the actual value of a 
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pixel as an index in an array to determine the corresponding value of s.This process is particularly 

easy because we are dealing with integers. For example, the s mapping for an 8-bit pixel with 

value 127 would be found in the 128th position in array {sj} (recall that we start at 0) out of the 

possible 256 positions. If we stopped here and mapped the value of each pixel of an input image 

by the 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. (a) Graphical interpretation of mapping from rk to sk via T(r). (b) Mapping of zq to its 

corresponding value vq via G(z) (c) Inverse mapping from sk to its corresponding value of 

zk. 
 

method just described, the output would be a histogram-equalized image. In order to implement 
histogram matching we have to go one step further. Figure 5(b) is a hypothetical transformation 

function G obtained from a given histogram pz(z). For any zq , this transformation function yields 

a corresponding value vq. This mapping is shown by the arrows in Fig. 5(b). Conversely, given 

any value vq, we would find the corresponding value zq from G
-1

. In terms of the figure, all this 

means graphically is that we would reverse the direction of the arrows to map vq into its 

corresponding zq. However, we know from the definition that v=s for corresponding subscripts, so 

we can use exactly this process to find the zk corresponding to any value sk that we computed 

previously from the equation sk = T(rk) .This idea is shown in Fig.5(c). 

 

 Since we really do not have the z’s (recall that finding these values is precisely the objective of 

histogram matching),we must resort to some sort of iterative scheme to find z from s.The fact that we are dealing with 

integers makes this a particularly simple process. Basically, because vk = sk, we have that the z’s for which we are 

looking must satisfy the equation G(zk)=s k, or (G(zk)-sk)=0. Thus, all we have to do to find the value of zk 

corresponding to sk is to iterate on values of z such that this equation is satisfied for k=0,1,2,…...., L-1. We do not have 

to find the inverse of  
G because we are going to iterate on z. Since we are dealing with integers, the closest we can get 

to satisfying the equation (G(zk)-sk)=0 is to let zk=  for each value of k, where  is the smallest 

integer in the interval [0, L-1] such that 
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Given a value sk, all this means conceptually in terms of Fig. 5(c) is that we would start with and 

increase it in integer steps until Eq is satisfied, at which point we let repeating this process for all 

values of k would yield all the required mappings from s to z, which constitutes the 

implementation of Eq. In practice, we would not have to start with each time because the values 
 

of sk are known to increase monotonically. Thus, for k=k+1, we would start with  and 

increment in integer values from there. 

 

Local enhancement. 
 

Local Enhancement: 
 

The histogram processing methods discussed in the previous two sections are global, in the sense 

that pixels are modified by a transformation function based on the gray-level content of an entire 

image. Although this global approach is suitable for overall enhancement, there are cases in which 

it is necessary to enhance details over small areas in an image. The number of pixels in these areas 

may have negligible influence on the computation of a global transformation whose shape does 

not necessarily guarantee the desired local enhancement. The solution is to devise transformation 

functions based on the gray-level distribution—or other properties—in the neighborhood of every 

pixel in the image. 
 

The histogram processing techniques are easily adaptable to 

local enhancement.The procedure is to define a square or rectangular neighborhood and move the 

center of this area from pixel to pixel. At each location, the histogram of the points in the 

neighborhood is computed and either a histogram equalization or histogram specification 

transformation function is obtained. This function is finally used to map the gray level of the 
 

pixel centered in the neighborhood.The center of the neighborhood region is then moved to an 

adjacent pixel location and the procedure is repeated. Since only one new row or column of the 

neighborhood changes during a pixel-to-pixel translation of the region, updating the histogram 

obtained in the previous location with the new data introduced at each motion step is possible. 

This approach has obvious a dvantages over repeatedly computing the histogram over all pixels in 

the neighborhood region each time the region is moved one pixel location.Another approach used 

some times to reduce computation is to utilize nonoverlapping regions, but this method usually 

produces an undesirable checkerboard effect. 

 

Image subtaction.  
 

Image Subtraction: 
 

The difference between two images f(x, y) and h(x, y), expressed as  
 
 
 
 

is obtained by computing the difference between all pairs of corresponding pixels from f and h. 

The key usefulness of subtraction is the enhancement of differences between images. The higher-

order bit planes of an image carry a significant amount of visually relevant detail, while the lower 

planes contributemore to fine (often imperceptible) detail. Figure 7(a) shows the fractal image 

used earlier to illustrate the concept of bit planes. Figure 7(b) shows the result of discarding 

(setting to zero) the four least significant bit planes of the original image.The images are nearly 

identical visually, with the exception of a very slight drop in overall contrast due to less variability 

of the graylevel values in the image of Fig. 7(b).The pixel-by-pixel difference between these two 

images is shown in Fig. 7(c).The differences in pixel values are so small that the difference image 

appears nearly black when displayed on an 8-bit display. In order to bring out more detail,we can 

perform a contrast stretching transformation. We chose histogram equalization, but an appropriate 
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power-law transformation would have done the job also. The result is shown in Fig. 7(d). This is a 

very useful image for evaluating the effect of setting to zero the lower-order planes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.7 (a) Original fractal image (b) Result of setting the four lower-order bit planes to zero 

(c) Difference between (a) and(b) (d) Histogram equalized difference image. 

 

One of the most commercially successful and beneficial uses of image subtraction is in the area of 

medical imaging called mask mode radiography. In this case h(x, y), the mask, is an X-ray image 

of a region of a patient’s body captured by an intensified TV camera (instead of traditional X-ray 

film) located opposite an X-ray source.The procedure consists of injecting a contrast medium into 

the patient’s bloodstream, taking a series of images of the same anatomical region as h(x, y), and 

subtracting this mask from the series of incoming images after injection of the contrast medium. 

The net effect of subtracting the mask from each sample in the incoming stream of TV images is 

that the areas that are different between f(x, y) and h(x, y) appear in the output image as enhanced 

detail. Because images can be captured at TV rates, this procedure in essence gives a movie 

showing how the contrast medium propagates through the various arteries in the area being 

observed. 

 

Image averaging process. 
 

Image Averaging: 
 

Consider a noisy image g(x, y) formed by the addition of noise h(x, y) to an original image f(x,y); 

that is, 
 
 
 

 

where the assumption is that at every pair of coordinates (x, y) the noise is uncorrelated and has 

zero average value.The objective of the following procedure is to reduce the noise content by 

adding a set of noisy images, {gi (x, y)}. If the noise satisfies the constraints just stated, it can be 
 

shown that if an image  is formed by averaging K different noisy images,  
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Then it follows that  
 
 
 
 
 

and  
 
 
 
 
 
 
 
 

 

Where  is the expected value of  and  and  are the variances of and 

η, all at coordinates (x, y). The standard deviation at any point in the average image is 
 
 
 
 
 
 
 
 
 
 

 

As K increases, the above equations indicate that the variability (noise) of the pixel values at 
 

each location (x, y) decreases.Because  this means that  

approaches f(x, y) as the number of noisy images used in the averaging process increases. In 

practice, the images gi(x, y) must be registered (aligned) in order to avoid the introduction of 

blurring and other artifacts in the output image. 
 
 

Filtering in spatial domain.  
 

Basics of Spatial Filtering: 
 

Some neighborhood operations work with the values of the image pixels in the neighborhood and 

the corresponding values of a subimage that has the same dimensions as the neighborhood.The 

subimage is called a filter,mask, kernel, template, or window,with the first three terms being the 

most prevalent terminology.The values in a filter subimage are referred to as coefficients, rather 

than pixels. The concept of filtering has its roots in the use of the Fourier transform for signal 

processing in the so-called frequency domain. We use the term spatial filtering to differentiate this 

type of process from the more traditional frequency domain filtering. 
 

The mechanics of spatial filtering are illustrated in Fig.9.1. The process consists simply of moving 

the filter mask from point to point in an image. At each point (x, y), the response of the filter at 

that point is calculated using a predefined relationship. The response is given by a sum of products 

of the filter coefficients and the corresponding image pixels in the area spanned by the filter mask. 

For the 3 x 3 mask shown in Fig. 9.1, the result (or response), R, of linear filtering with the filter 

mask at a point (x, y) in the image is 
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which we see is the sum of products of the mask coefficients with the corresponding pixels 

directly under the mask. Note in particular that the coefficient w(0, 0) coincides with image 

 

value f(x, y), indicating that the mask is centered at (x, y) when the computation of the sum of 

products takes place. For a mask of size m x n,we assume that m=2a+1 and n=2b+1,where a and b 

are nonnegative integers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.9.1 The mechanics of spatial filtering. The magnified drawing shows a 3X3 mask and the 

image section directly under it; the image section is shown displaced out from under the 

mask for ease of readability. 

 
 

 

In general, linear filtering of an image f of size M x N with a filter mask of size m x n is given by 

the expression: 

where, from the previous paragraph, a=(m-1)/2 and b=(n-1)/2. To generate a complete filtered 

image this equation must be applied for x=0,1,2,……, M-1 and y=0,1,2,……, N-1. In this way, 
 

we are assured that the mask processes all pixels in the image. It is easily verified when m=n=3 

that this expression reduces to the example given in the previous paragraph. 
 

The process of linear filtering is similar to a frequency domain concept called convolution. For 

this reason, linear spatial filtering often is referred to as “convolving a mask with an image.” 

Similarly, filter masks are sometimes called convolution masks. The term convolution kernel also 

is in common use. When interest lies on the response, R, of an m x n mask at any point (x,y), and 

not on the mechanics of implementing mask convolution, it is common practice to simplify the 

notation by using the following expression: 
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where the w’s are mask coefficients, the z’s are the values of the image graylevels corresponding 

to those coefficients, and mn is the total number of coefficients in the mask. For the 3 x 3 general 

mask shown in Fig.9.2 the response at any point (x, y) in the image is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.9.2 Another representation of a general 3 x 3 spatial filter mask. 
 

An important consideration in implementing neighborhood operations for spatial filtering is the 

issue of what happens when the center of the filter approaches the border of the image.Consider 

for simplicity a square mask of size n x n.At least one edge of such a mask will coincide with the 

border of the image when the center of the mask is at a distance of (n-1)/2 pixels away from the 

border of the image. If the center of the mask moves any closer to the border, one or more rows or 

columns of the mask will be located outside the image plane.There are several ways to handle this 

situation.The simplest is to limit the excursions of the center of the mask to be at a distance no less 

than (n-1)/2 pixels from the border. The resulting filtered image will be smaller than the original, 

but all the pixels in the filtered imaged will have been processed with the full mask. If the result is 

required to be the same size as the original, then the approach typically employed is to filter all 

pixels only with the section of the mask that is fully contained in the image.With this approach, 

there will be bands of pixels near the border that will have been processed with a partial filter 

mask.Other approaches include “padding” the image by adding rows and columns of 0’s (or other 

constant gray level), or padding by replicating rows or columns.The padding is then stripped off at 

the end of the process. 
 

This keeps the size of the filtered image the same as the original, but the values of the padding will 

have an effect near the edges that becomes more prevalent as the size of the mask increases.The 

only way to obtain a perfectly filtered result is to accept a somewhat smaller filtered image by 

limiting the excursions of the center of the filter mask to a distance no less than (n-1)/2 pixels 

from the border of the original image. 
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Smoothing Spatial filters. 
 

Smoothing Spatial Filters: 
 

Smoothing filters are used for blurring and for noise reduction. Blurring is used in preprocessing 

steps, such as removal of small details from an image prior to (large) object extraction, and 

bridging of small gaps in lines or curves. Noise reduction can be accomplished by blurring with a 

linear filter and also by non-linear filtering. 
 

(1) Smoothing Linear Filters: 
 

The output (response) of a smoothing, linear spatial filter is simply the average of the pixels 

contained in the neighborhood of the filter mask. These filters sometimes are called averaging 

filters. The idea behind smoothing filters is straightforward.By replacing the value of every pixel 
 

in an image by the average of the gray levels in the neighborhood defined by the filter mask, this 

process results in an image with reduced “sharp” transitions in gray levels. Because random noise 

typically consists of sharp transitions in gray levels, the most obvious application of smoothing is 

noise reduction.However, edges (which almost always are desirable features of an image) also are 

characterized by sharp transitions in gray levels, so averaging filters have the undesirable side 

effect that they blur edges. Another application of this type of process includes the smoothing of 

false contours that result from using an insufficient number of gray levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.10.1 Two 3 x 3 smoothing (averaging) filter masks.The constant multiplier in front of 

each mask is equal to the sum of the values of its coefficients, as is required to compute an 

average. 

 
 

 

A major use of averaging filters is in the reduction of “irrelevant” detail in an image. By 

“irrelevant”we mean pixel regions that are small with respect to the size of the filter mask. 
 

Figure 10.1 shows two 3 x 3 smoothing filters. Use of the first filter yields the standard average of 

the pixels under the mask.This can best be seen by substituting the coefficients of the mask in 
 
 
 
 
 
 

 

which is the average of the gray levels of the pixels in the 3 x 3 neighborhood defined by the 

mask.Note that, instead of being 1/9, the coefficients of the filter are all 1’s.The idea here is that it 

is computationally more efficient to have coefficients valued 1. At the end of the filtering process 

the entire image is divided by 9. An m x n mask would have a normalizing constant equal to 1/mn. 

 

 

A spatial averaging filter in which all coefficients are equal is sometimes called a box filter. 
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The second mask shown in Fig.10.1 is a little more interesting. This mask yields a so-called 

weighted average, terminology used to indicate that pixels are multiplied by different coefficients, 

thus giving more importance (weight) to some pixels at the expense of others. In the mask shown 

in Fig. 10.1(b) the pixel at the center of the mask is multiplied by a higher value than any other, 

thus giving this pixel more importance in the calculation of the average.The other pixels are 

inversely weighted as a function of their distance from the center of the mask. The diagonal terms 

are further away from the center than the orthogonal neighbors (by a factor of √2) and, thus, are 

weighed less than these immediate neighbors of the center pixel. The basic strategy behind 

weighing the center point the highest and then reducing the value of the coefficients as a function 

of increasing distance from the origin is simply an attempt to reduce blurring in the smoothing 

process. We could have picked other weights to accomplish the same general objective. However, 

the sum of all the coefficients in the mask of Fig. 10.1(b) is equal to 16, an attractive feature for 

computer implementation because it has an integer power of 2. In practice, it is difficult in general 

to see differences between images smoothed by using either of the masks in Fig. 10.1, or similar 

arrangements, because the area these masks span at any one location in an image is so small. 

 

 

The general implementation for filtering an M x N image with a weighted averaging filter of size 

m x n (m and n odd) is given by the expression 
 
 
 
 
 
 
 

 

. 
 

(2) Order-Statistics Filters: 
 

Order-statistics filters are nonlinear spatial filters whose response is based on ordering (ranking) 

the pixels contained in the image area encompassed by the filter, and then replacing the value of 

the center pixel with the value determined by the ranking result. The best-known example in this 

category is the median filter, which, as its name implies, replaces the value of a pixel by the 

median of the gray levels in the neighborhood of that pixel (the original value of the pixel is 

included in the computation of the median). Median filters are quite popular because, for certain 

types of random noise, they provide excellent noise-reduction capabilities, with considerably less 

blurring than linear smoothing filters of similar size. Median filters are particularly effective in the 

presence of impulse noise, also called salt-and-pepper noise because of its appearance as white 

and black dots superimposed on an image. 
 

The median, ε, of a set of values is such that half the values in the set are less than or equal to ε, 

and half are greater than or equal to ε. In order to perform median filtering at a point in an image, 

we first sort the values of the pixel in question and its neighbors, determine their median, and 

assign this value to that pixel. For example, in a 3 x 3 neighborhood the median is the 5th largest 

value, in a 5 x 5 neighborhood the 13th largest value, and so on. When several values in a 

neighborhood are the same, all equal values are grouped. For example, suppose that a 3 x 3 

neighborhood has values (10, 20, 20, 20, 15, 20, 20, 25, 100). These values are sorted as (10, 15, 

20, 20, 20, 20, 20, 25, 100), which results in a median of 20. Thus, the principal function of 

median filters is to force points with distinct gray levels to be more like their neighbors. In fact, 

isolated clusters of pixels that are light or dark with respect to their neighbors, and whose area is 

less than n
2 /

 2 (one-half the filter area), are eliminated by an n x n median filter. In this case 

“eliminated” means forced to the median intensity of the neighbors. Larger clusters are affected 

considerably less. 
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                     Gradiant and the Laplacian in image enhancement. 

Use of Second Derivatives for Enhancement–The Laplacian: 
 

The approach basically consists of defining a discrete formulation of the second-order derivative 

and then constructing a filter mask based on that formulation. We are interested in isotropic filters, 

whose response is independent of the direction of the discontinuities in the image to which the 

filter is applied. In other words, isotropic filters are rotation invariant, in the sense that rotating the 

image and then applying the filter gives the same result as applying the filter to the image first and 

then rotating the result. 
 

Development of the method: 
 

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic derivative operator is the 

Laplacian, which, for a function (image) f(x, y) of two variables, is defined as 
 
 
 
 
 
 
 
 

 

Because derivatives of any order are linear operations, the Laplacian is a linear operator. In order 

to be useful for digital image processing, this equation needs to be expressed in discrete form. 

There are several ways to define a digital Laplacian using neighborhoods. digital second.Taking 

into account that we now have two variables, we use the following notation for the partial second-

order derivative in the x-direction: 

  
 
 
 
 

and, similarly in the y-direction, as  
 
 
 
 
 

 

The digital implementation of the two-dimensional Laplacian in Eq. is obtained by summing these 

two components 
 
 
 
 
 

 

This equation can be implemented using the mask shown in Fig.11.1(a), which gives an isotropic 

result for rotations in increments of 90°. 
 

The diagonal directions can be incorporated in the definition of the digital Laplacian by adding 

two more terms to Eq., one for each of the two diagonal directions.The form of each new term is 

the same as either Eq. 
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Fig.11.1. (a) Filter mask used to implement the digital Laplacian (b) Mask used to 

implement an extension of this equation that includes the diagonal neighbors. (c) and (d) 

Two other implementations of the Laplacian. 
 

but the coordinates are along the diagonals. Since each diagonal term also contains a –2f(x, y) 

term, the total subtracted from the difference terms now would be –8f(x, y). The mask used to 

implement this new definition is shown in Fig.11.1(b). This mask yields isotropic results for 

increments of 45°. The other two masks shown in Fig. 11 also are used frequently in practice. 
 

They are based on a definition of the Laplacian that is the negative of the one we used here. As 

such, they yield equivalent results, but the difference in sign must be kept in mind when 

combining (by addition or subtraction) a Laplacian-filtered image with another image. 
 

Because the Laplacian is a derivative operator, its use highlights gray-level discontinuities in an 

image and deemphasizes regions with slowly varying gray levels.This will tend to produce images 

that have grayish edge lines and other discontinuities, all superimposed on a dark, featureless 

background.Background features can be “recovered” while still preserving the sharpening effect 

of the Laplacian operation simply by adding the original and Laplacian images. As noted in the 

previous paragraph, it is important to keep in mind which definition of the Laplacian is used. If the 

definition used has a negative center coefficient, then we subtract, rather 

 

than add, the Laplacian image to obtain a sharpened result.Thus, the basic way in which we use 

the Laplacian for image enhancement is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Use of First Derivatives for Enhancement—The Gradient: 
 

First derivatives in image processing are implemented using the magnitude of the gradient. For a 

function f(x, y), the gradient of f at coordinates (x, y) is defined as the two-dimensional column 

vector 
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The magnitude of this vector is given by  
 
 
 
 
 
 
 
 
 
 
 

 

The components of the gradient vector itself are linear operators, but the magnitude of this vector 

obviously is not because of the squaring and square root operations. On the other hand, the partial 

derivatives are not rotation invariant (isotropic), but the magnitude of the gradient vector is. 

Although it is not strictly correct, the magnitude of the gradient vector often is referred to as the 

gradient. 

 

The computational burden of implementing over an entire image is not trivial, and it is common 

practice to approximate the magnitude of the gradient by using absolute values instead of squares 

and square roots: 
 
 
 

 

This equation is simpler to compute and it still preserves relative changes in gray levels, but the 

isotropic feature property is lost in general. However, as in the case of the Laplacian, the isotropic 

properties of the digital gradient defined in the following paragraph are preserved only for a 

limited number of rotational increments that depend on the masks used to approximate the 

derivatives. As it turns out, the most popular masks used to approximate the gradient give the 

same result only for vertical and horizontal edges and thus the isotropic properties of the gradient 

are preserved only for multiples of 90°. 
 

As in the case of the Laplacian, we now define digital 

approximations to the preceding equations, and from there formulate the appropriate filter masks. 

In order to simplify the discussion that follows, we will use the notation in Fig. 11.2 (a) to denote 

image points in a 3 x 3 region. For example, the center point, z5 , denotes f(x, y), z1 denotes f(x-1, 

y-1), and so on. The simplest approximations to a first-order derivative that satisfy the conditions 

stated in that section are Gx = (z8 –z5) and Gy = (z6 – z5) . Two other definitions proposed by 

Roberts [1965] in the early development of digital image processing use cross differences: 
 
 
 
 

 

we compute the gradient as  
 
 

 

If we use absolute values, then substituting the quantities in the equations gives us the following 

approximation to the gradient: 
 
 
 
 
 

 

This equation can be implemented with the two masks shown in Figs. 11.2 (b) and(c). These 

masks are referred to as the Roberts cross-gradient operators. Masks of even size are awkward to 
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implement. The smallest filter mask in which we are interested is of size 3 x 3.An approximation 

using absolute values, still at point z5 , but using a 3*3 mask, is 
 
 
 
 
 
 

The difference between the third and first rows of the 3 x 3 image region approximates the 

derivative in the x-direction, and the difference between the third and first columns approximates 

the derivative in the y-direction. The masks shown in Figs. 11.2 (d) and (e), called the Sobel 

operators. The idea behind using a weight value of 2 is to achieve some smoothing by giving more 

importance to the center point. Note that the coefficients in all the masks shown in Fig. 11.2 sum 

to 0, indicating that they would give a response of 0 in an area of constant gray level, as expected 

of a derivative operator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.11.2 A 3 x 3 region of an image (the z’s are gray-level values) and masks used to compute 

the gradient at point labeled z5 . All masks coefficients sum to zero, as expected of a 

derivative operator. 
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Frequency domain techniques of image enhancement 
 

Enhancement In Frequency Domain: 

 

The frequency domain methods of image enhancement are based on convolution theorem. This is 

represented as,  
g(x, y) = h (x, y)*f(x, y)  

Where.  
g(x, y) = Resultant image  
h(x, y) = Position invariant operator  
f(x, y)= Input image  

The Fourier transform representation of equation above is, 
 

G (u, v) = H (u, v) F (u, v) 
 

The function H (u, v) in equation is called transfer function. It is used to boost the edges of input 

image f (x, y) to emphasize the high frequency components. 

 
The different frequency domain methods for image enhancement are as follows. 

 
2. Contrast stretching.  
3. Clipping and thresholding.  
4. Digital negative.  
5. Intensity level slicing and  
6. Bit extraction. 

 

 

1. Contrast Stretching: 

 
Due to non-uniform lighting conditions, there may be poor contrast between the background and 

the feature of interest. Figure 1.1 (a) shows the contrast stretching transformations. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1.1 (a) Histogram of input image 
 
 
 
 
 
 
 
 

 

 

 

Fig.1.1 (b) Linear Law 
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Fig.1.1 (c) Histogram of the transformed image 

 

These stretching transformations are expressed as 
  

In the area of stretching the slope of transformation is considered to be greater than unity. The 

parameters of stretching transformations i.e., a and b can be determined by examining the 

histogram of the image. 
 

2. Clipping and Thresholding: 

 

Clipping is considered as the special scenario of contrast stretching. It is the case in which the 

parameters are α = γ = 0. Clipping is more advantageous for reduction of noise in input signals of 

range [a, b]. 
 

Threshold of an image is selected by means of its histogram. Let us take the image shown in the 

following figure 1.2. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1.2 

 

The figure 1.2 (b) consists of two peaks i.e., background and object. At the abscissa of histogram 

minimum (D1) the threshold is selected. This selected threshold (D1) can separate background 

and object to convert the image into its respective binary form. The thresholding transformations 

are shown in figure 1.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1.3 
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3. Digital Negative: 

 

The digital negative of an image is achieved by reverse scaling of its grey levels to the 

transformation. They are much essential in displaying of medical images. 
 

A digital negative transformation of an image is shown in figure 1.4. 
 
 
 
 
 
 

 

 

 

 

 

 
  
  
 

Fig.1.4 
 

4. Intensity Level Slicing: 

 

The images which consist of grey levels in between intensity at background and other objects 

require to reduce the intensity of the object. This process of changing intensity level is done with 

the help of intensity level slicing. They are expressed as 
 
 
 
 
 
 
 
 
 
 
 

 

The histogram of input image and its respective intensity level slicing is shown in the figure 1.5.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1.5 
 

When an image is uniformly quantized then, the n
th

 most significant bit can be extracted and 

displayed. 
 

Let, u = k1 2
B-1

 + k2 2
B-2

 +……………..+ kB-1 2 + kB 

 

Then, the output is expressed as  
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                Difference  between spatial domain and frequency domain enhancement        

techniques. 
 

The spatial domain refers to the image plane itself, and approaches in this category are based on 

direct manipulation of pixels in an image. Frequency domain processing techniques are based on 

modifying the Fourier transform of an image. 
 

The term spatial domain refers to the aggregate of pixels 

composing an image and spatial domain methods are procedures that operate directly on these 

pixels. Image processing function in the spatial domain may he expressed as. 
 

 

g(x, y) = T[f(x, y)] 
 

 

Where  
f(x, y) is the input image  
g(x, y) is the processed image and  
T is the operator on f defined over some neighborhood values of  

(x, y). 
 

 

Frequency domain techniques are based on convolution theorem. Let g(x, y) be the image formed 

by the convolution of an image f(x, y) and linear position invariant operation h(x, y) i.e., 
 

g(x, y) = h(x, y) * f(x, y) 

 

Applying convolution theorem 

 

G(u, v) = H(u, v) F(u, v) 
 

  

Where G, H and F are the Fourier transforms of g, h and f respectively. In the terminology of 

linear system the transform H (u, v) is called the transfer function of the process. The edges in 

f(x, y) can he boosted by using H (u, v) to emphasize the high frequency components of F (u, v). 
 
 

Ideal Low Pass Filter (ILPF) in frequency domain. 
 

Lowpass Filter: 

 

The edges and other sharp transitions (such as noise) in the gray levels of an image contribute 

significantly to the high-frequency content of its Fourier transform. Hence blurring (smoothing) 

is achieved in the frequency domain by attenuating us the transform of a given image. 
 

G (u, v) = H (u, v) F(u, v) 
 

where F (u, v) is the Fourier transform of an image to be smoothed. The problem is to select a 

filter transfer function H (u, v) that yields G (u, v) by attenuating the high-frequency components 

of F (u, v). The inverse transform then will yield the desired smoothed image g (x, y). 
 

Ideal Filter: 

 

A 2-D ideal lowpass filter (ILPF) is one whose transfer function satisfies the relation  
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where D is a specified nonnegative quantity, and D(u, v) is the distance from point (u, v) to the 

origin of the frequency plane; that is, 
 
 
 
 

 

Figure 3 (a) shows a 3-D perspective plot of H (u, v) u a function of u and v. The name ideal 

filter indicates that oil frequencies inside a circle of radius 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.3 (a) Perspective plot of an ideal lowpass filter transfer function; (b) filter cross 

section. 

 
 

 

Do are passed with no attenuation, whereas all frequencies outside this circle are completely 

attenuated. 

The lowpass filters are radially symmetric about the origin. For this type of filter, 

specifying a cross section extending as a function of distance from the origin along a radial line 

is sufficient, as Fig. 3 (b) shows. The complete filter transfer function can then be generated by 

rotating the cross section 360 about the origin. Specification of radially symmetric filters 

centered on the N x N frequency square is based on the assumption that the origin of the Fourier 

transform has been centered on the square.  
For an ideal lowpass filter cross section, the point of transition between H(u, v) = 

1 and H(u, v) = 0 is often called the cutoff frequency. In the case of Fig.3 (b), for example, the 

cutoff frequency is Do. As the cross section is rotated about the origin, the point Do traces a circle 

giving a locus of cutoff frequencies, all of which are a distance Do from the origin. The cutoff 

frequency concept is quite useful in specifying filter characteristics. It also serves as a common 

base for comparing the behavior of different types of filters.  
The sharp cutoff frequencies of an ideal lowpass filter cannot be realized with electronic 

components, although they can certainly be simulated in a computer. 
 
 

 Butterworth lowpass filter with a suitable example. 
 

Butterworth filter: 

 

The transfer function of the Butterworth lowpass (BLPF) of order n and with cutoff frequency 

locus at a distance Do, from the origin is defined by the relation 
 
 
 
 
 
 
 
 
 
 

 

A perspective plot and cross section of the BLPF function are shown in figure 4.  
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Fig.4 (a) A Butterworth lowpass filter (b) radial cross section for n = 1. 
 
 
 
 

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that establishes a 

clear cutoff between passed and filtered frequencies. For filters with smooth transfer functions, 

defining a cutoff frequency locus at points for which H (u, v) is down to a certain fraction of its 

maximum value is customary. In the case of above Eq. H (u, v) = 0.5 (down 50 percent from its 

maximum value of 1) when D (u, v) = Do. Another value commonly used is 1/√2 of the 

maximum value of H (u, v). The following simple modification yields the desired value when D 

(u, v) = Do:  
 
 
 
 
 
 
 
 
 

 Ideal High Pass Filter and Butterworth High Pass filter. 
 

High pass Filtering: 

 

An image can be blurred by attenuating the high-frequency components of its Fourier transform. 

Because edges and other abrupt changes in gray levels are associated with high-frequency 

components, image sharpening can be achieved in the frequency domain by a high pass filtering 

process, which attenuates the low-frequency components without disturbing high-frequency 

information in the Fourier transform. 
 

Ideal filter: 

 

2-D ideal high pass filter (IHPF) is one whose transfer function satisfies the relation  
 
 
 
 
 
 
 
 

where Do is the cutoff distance measured from the origin of the frequency plane. Figure 5.1 

shows a perspective plot and cross section of the IHPF function. This filter is the opposite of the 

ideal lowpass filter, because it completely attenuates all frequencies inside a circle of radius Do 

while passing, without attenuation, all frequencies outside the circle. As in the case of the ideal 

lowpass filler, the IHPF is not physically realizable. 
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Fig.5.1 Perspective plot and radial cross section of ideal high pass filter 
 

Butterworth filter: 

 

The tra nsfer function of the B utterworth high pass filter (BHPF ) of order n and with 

cutoff frequency locus at a distance Do from th e origin is d efined by the relation 
 
 
 
 
 
 
 
 

 

Figure 5.2 shows a perspective plot and cross section of the B HPF function. Note that when D  
(u, v)  = Do, H (u, v) is dow n to ½ of its maximu m value. A s in the c ase of the Butterworth  
lowpas s filter, com mon practice is to select the cut off frequen cy locus at points for which H (u,  
v) is down to 1/√2 of its maximum value.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.5.2 Perspectiv e plot and radial cro ss section for Butterw orth High Pass Filter with n = 1 
 
 
 
 
 
 
 

 

 
 
 
 

66



 
 

 

Gaussian High Pass and Gaussian Low Pass Filter. 
 

Gaussian Lowpass Filters: 

 

The form of these filters in two dimensions is given by  
 
 
 

 

where, D(u, v) is the distance from the origin of the Fourier transform.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.6.1 (a) Perspective plot of a GLPF transfer function, (b) Filter displayed as an image, (c) 

Filter radial cross sections for various values of Do. 
 

= is a measure of the spread of the Gaussian curve. By letting σ = Du, we can express the filter in 

a more familiar form in terms of the notation: 
 
 
 
 

 

where Do is the cutoff frequency. When D (u, v) = Do, the filter is down to 0.607 of its maximum 

value. 

 
 

 

Gaussian Highpass Filters: 

 

The transfer function of the Gaussian highpass filter (GHPF) with cutoff frequency locus at a 

distance Do from the origin is given by 

  
The figure 6.2 shows a perspective plot, image, and cross section of the GHPF function.  
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Fig.6.2. Perspective plot, image representation, and cross section of a typical Gaussian high 

pass filter 

 
 

 

Even the filtering of the smaller objects and thin bars is cleaner with the Gaussian filler. 
 
 

            Laplacian in frequency domain. 
 

The Laplacian in the Frequency Domain: 

 

It can be shown that  
 
 
 
 
 

 

From this simple expression, it follows that  
 
 
 
 
 
 

 

The expression inside the brackets on the left side of the above Eq. is recognized as the Laplacian 

of f(x, y). Thus, we have the important result 
 
  
 
 

which simply says that the Laplacian can be implemented in the frequency domain by using the filter 
 
 
 
 

 

As in all filtering operations, the assumption is that the origin of F (u, v) has been centered by 

performing the operation f(x, y) (-1) 
x+y

 prior to taking the transform of the image. If f (and F) are 

of size M X N, this operation shifts the center transform so that (u, v) = (0, 0) is at point (M/2, 

N/2) in the frequency rectangle. As before, the center of the filter function also needs to be shifted:  
 
 
 
 
 

 

The Laplacian-filtered image in the spatial domain is obtained by computing the inverse Fourier 

transform of H (u, v) F (u, v): 
 
 
 
 

 

Conversely, computing the Laplacian in the spatial domain and computing the Fourier transform 

of the result is equivalent to multiplying F(u, v) by H(u, v). We express this dual relationship in 

the familiar Fourier-transform-pair notation 
 
 
 
 

 

The spatial domain Laplacian filter function obtained by taking the inverse Fourier transform of 
Eq. has some interesting properties, as Fig.7 shows. Figure 7(a) is a 3 -D perspective plot. The 
function is centered at (M/2, N/2), and its value at the top of the dome is zero. All other values are 
negative. Figure 7(b) shows H (u, v) as an image, also centered. Figure 7(c) is the Laplacian in the 

spatial domain, obtained by multiplying by H (u, v) by (-1)
u+v

 , taking the inverse Fourier 

transform, and multiplying the real part of the result by (-l)
x+y

 . Figure 7(d) is a zoomed section at 
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about the origin of Fig.7(c).' Figure 7(e) is a horizontal gray-level profile passing through the 
center of the zoomed section. Finally, Fig.7 (f) shows the mask to implement the definition of the 
discrete Laplacian in the spatial domain. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.7 (a) 3 -D plot of Laplacian in the frequency domain, (b) Image representation of (a), (c) 

Laplacian in the spatial domain obtained from the inverse DFT of (b) (d) Zoomed section of 

the origin of (c). (e) Gray-level profile through the center of (d). (f) Laplacian mask 
 
 

horizontal profile through the center of this mask has the same basic shape as the profile in Fig. 

7(e) (that is, a negative value between two smaller positive values). We form an enhanced image 

g(x, y) by subtracting the Laplacian from the original image: 
 
 
 
 
 

 

High boost and high frequency filtering. 
 

High-Boost Filtering and High-Frequency Emphasis Filtering: 

 

All the filtered images have one thing in common: Their average background intensity has been 

reduced to near black. This is due to the fact that the highpass filters we applied to those images 

eliminate the zero-frequency component of their Fourier transforms. In fact, enhancement using 

the Laplacian does precisely this, by adding back the entire image to the filtered result. Sometimes 

it is advantageous to increase the contribution made by the original image to the overall filtered 

result. This approach, called high-boost filtering, is a generalization of unsharp masking. Unsharp 

masking consists simply of generating a sharp image by subtracting from an image a blurred 69



version of itself. Using frequency domain terminology, this means obtaining a highpass-filtered 

image by subtracting from the image a lowpass-filtered version of itself. That is  
 
 
 

 

High-boost filtering generalizes this by multiplying f (x, y) by a constant A > 1:  
 
 
 
 

Thus, high-boost filtering gives us the flexibility to increase the contribution made by the image to 

the overall enhanced result. This equation may be written as 
 
 
 

 

Then, using above Eq. we obtain  
 
 
 

 

This result is based on a highpass rather than a lowpass image. When A = 1, high-boost filtering 

reduces to regular highpass filtering. As A increases past 1, the contribution made by the image 

itself becomes more dominant. 
 

We have Fhp (u,v) = F (u,v) – Flp (u,v). But Flp (u,v) = Hlp (u,v)F(u,v), where Hlp is the transfer 

function of a lowpass filter. Therefore, unsharp masking can be implemented directly in the 

frequency domain by using the composite filter 
 
 
 
 

 

Similarly, high-boost filtering can be implemented with the composite filter  
 
 
 

 

with A > 1. The process consists of multiplying this filter by the (centered) transform of the input 

image and then taking the inverse transform of the product. Multiplication of the real part of this 

result by (-l) 
x+y

 gives us the high-boost filtered image fhb (x, y) in the spatial domain. 

 

Concept of homomorphic filtering. 
 

Homomorphic filtering: 

The illumination-reflectance model can be used to develop a frequency domain procedure for 

improving the appearance of an image by simultaneous gray-level range compression and contrast 

enhancement. An image f(x, y) can be expressed as the product of illumination and reflectance 

components:  
 
 
 

Equation above cannot be used directly to operate separately on the frequency components of 

illumination and reflectance because the Fourier transform of the product of two functions is not 

separable; in other words, 
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where Fi (u, v) and Fr (u, v) are the Fourier transforms of ln i(x, y) and ln r(x, y), respectively. If 

we process Z (u, v) by means of a filter function H (u, v) then, from 
 
 
 
 
 
 

 

where S (u, v) is the Fourier transform of the result. In the spatial domain,  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now we have  
 
 
 

 

Finally, as z (x, y) was formed by taking the logarithm of the original image f (x, y), the inverse 

(exponential) operation yields the desired enhanced image, denoted by g(x, y); that is, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9.1 Homomorphic filtering approach for image enhancement 
 

and  
 
 
 

 

are the illumination and reflectance components of the output image. The enhancement approach 

using the foregoing concepts is summarized in Fig. 9.1. This method is based on a special case of 

a class of systems known as homomorphic systems. In this particular application, the key to the 

approach is the separation of the illumination and reflectance components achieved. The 

homomorphic filter function H (u, v) can then operate on these components separately. 
 

The illumination component of an image generally is characterized by slow 

spatial variations, while the reflectance component tends to vary abruptly, particularly at the 
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junctions of dissimilar objects. These characteristics lead to associating the low frequencies of the 

Fourier transform of the logarithm of an image with illumination and the high frequencies with 

reflectance. Although these associations are rough approximations, they can be used to advantage 

in image enhancement. 
 

A good deal of control can be gained over the illumination and 
reflectance components with a homomorphic filter. This control requires specification of a filter 
function H (u, v) that affects the low- and high-frequency components of the Fourier transform in 

different ways. Figure 9.2 shows a cross section of such a filter. If the parameters γL and γH are 

chosen so that γL < 1 and γH > 1, the filter function shown in Fig. 9.2 tends to decrease the 

contribution made by the low frequencies (illumination) and amplify the contribution made by 
high frequencies (reflectance). The net result is simultaneous dynamic range compression and 
contrast enhancement.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.9.2 Cross section of a circularly symmetric filter function D (u. v) is the distance from 

the origin of the centered transform. 
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G(u, v)  H (u,v)F (u,v) 

Image Given Image 

g(m, n)  h(m, n) * f (m, n) 

Image Given Image 

MODULE IV 
 

Image Enhancement: Frequency domain methods 

 
 The concept of filtering is easier to visualize in the frequency 

domain. Therefore, enhancement of image 

in the frequency domain, based on its DFT 

f (m, n) 

F (u, v) . 

can be done 

 

 This is particularly useful, if the spatial extent of the point- 

spread sequence h(m, n) is large. In this case, the convolution 
 

PSS 
 

 

 

 

 

Enhanced 
 
 

may be computationally unattractive. 

 

 We can therefore directly design a transfer function 

 

 
H (u, v) 

 

 
and 

implement the enhancement in the frequency domain as 

follows: 
 
 

Transfer function 
 

 

 

 

 

Enhanced 
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Lowpass filtering 

 
 Edges and sharp transitions in grayvalues in an image contribute 

significantly to high-frequency content of its Fourier transform. 

 

 Regions of relatively uniform grayvalues in an image contribute 

to low-frequency content of its Fourier transform. 

 

 Hence, an image can be smoothed in the Frequency domain by 

attenuating the high-frequency content of its Fourier transform. 

This would be a lowpass filter! 

 

 For simplicity, we will consider only those filters that are real 

and radially symmetric. 
 

 An ideal lowpass filter with cutoff frequency r0 : 
 

 

 

 
 

H (u, v) 
1, if 

0, if 

 r0 

 r0 

u 2  v2 

u 2  v2 
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Ideal LPF with r0  57 
 

 Note that the origin (0, 0) is at the center and not the corner of 

the image (recall the “fftshift” operation). 

 

 The abrupt transition from 1 to 0 of the transfer function 

H (u,v) cannot be realized in practice, using electronic 

components. However, it can be simulated on a computer. 
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Ideal LPF examples 
 

 

 
 

 

Original Image LPF image, r0  57 
 

 

  
 

LPF image, r0  36 LPF image, r0  26 
 
 

 Notice the severe ringing effect in the blurred images, which 

is a characteristic of ideal filters. It is due to the discontinuity 

in the filter transfer function. 
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Choice of cutoff frequency in ideal LPF 
 The cutoff frequency r0 of the ideal LPF determines the amount 

of frequency components passed by the filter. 

 Smaller the value of r0 , more the number of image components 

eliminated by the filter. 

 In general, the value of r0 

 
is chosen such that most components 

of interest are passed through, while most components not of 

interest are eliminated. 

 Usually, this is a set of conflicting requirements. We will see 

some details of this is image restoration 

 A useful way to establish a set of standard cut-off frequencies is 

to compute circles which enclose a specified fraction of the total 

image power. 

 Suppose PT 
N 1 M 1 

 

v 0 u 0 

P(u, v),  where P(u, v)  F (u, v) 2 , is the 

total image power. 
 Consider a circle of radius r0 ()  as a cutoff frequency with 

respect to a threshold  such that ∑∑ P(u, v)  PT . 
v u 

 We can then fix a threshold  and obtain an appropriate cutoff 

frequency r0 () . 
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Butterworth lowpass filter 

 A two-dimensional Butterworth lowpass filter has transfer 
function: 

H (u, v)  
1
 

1 
r0 

 
 n: filter order, r0: cutoff frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Frequency response does not have a sharp transition as in the 

ideal LPF. 

 

 This is more appropriate for image smoothing than the ideal 

LPF, since this not introduce ringing. 

u 2  v 2 

Butterworth LPF with 

r0  36 and n  1 

2n 
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Butterworth LPF example 
 

 

 

 

 

 

Original Image LPF image, r0  18 
 

 

 

  
 

LPF image, r0  13 
LPF image, r0  10 
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Butterworth LPF example: False 

contouring 
 

 

 

 

 

 

 

 

 

Image with false contouring 

due to insufficient bits used 

for quantization 

Lowpass filtered version of 

previous image 
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Butterworth LPF example: Noise 

filtering 
 

 

 

 

 

 

 

 

 

Original Image 

 

 

 

 

 

 

 

 

Noisy Image 

 

 

 

 

 

 

 

 

 
LPF Image 
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u2  v2 

 

 

 

 

 

 

Gaussian Low pass filters 

 
 The form of a Gaussian lowpass filter in two-dimensions is 

given by H (u, v)  eD
2 (u ,v) / 22  

, where D(u, v)  is the 

distance from the origin in the frequency plane. 

 The parameter  measures the spread or dispersion of the 

Gaussian curve. Larger the value of , larger the cutoff 

frequency and milder the filtering. 

 When D(u, v)  , the filter is down to 0.607 of its maximum 

value of 1. 

 See Example 4.6 in the text for an illustration. 

 Also read section 4.3.4 for an application of lowpass filtering to 
text images. 
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Highpass filtering 

 
 Edges and sharp transitions in grayvalues in an image contribute 

significantly to high-frequency content of its Fourier transform. 

 

 Regions of relatively uniform grayvalues in an image contribute 

to low-frequency content of its Fourier transform. 

 

 Hence, image sharpening in the Frequency domain can be done 

by attenuating the low-frequency content of its Fourier 

transform. This would be a highpass filter! 

 

 For simplicity, we will consider only those filters that are real 
and radially symmetric. 

 

 An ideal highpass filter with cutoff frequency r0 : 
 

 

 
H (u, v) 

0,  if 

1,  if 

 
 r0 

 r0 

u2  v2 

u2  v2 
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Ideal HPF with r0  36 
 

 Note that the origin (0, 0) is at the center and not the corner of 

the image (recall the “fftshift” operation). 
 

 The abrupt transition from 1 to 0 of the transfer function 

H (u,v) cannot be realized in practice, using electronic 

components. However, it can be simulated on a computer. 
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Ideal HPF examples 
 

 

 

Original Image HPF image, r0  18 
 

 

 
 

HPF image, r0  36 HPF image, r0  26 

 

 Notice the severe ringing effect in the output images, which 

is a characteristic of ideal filters. It is due to the discontinuity 

in the filter transfer function. 
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u 2  v 2 

Butterworth HPF with 

r0  47 and 2 

 
 

Butterworth highpass filter 

 A two-dimensional Butterworth highpass filter has transfer 
function: 

H (u, v)  
1
 

1  
r0

 

 

 n: filter order, r0: cutoff frequency 
 

 

 
 

 

 
 

 Frequency response does not have a sharp transition as in the 

ideal HPF. 

 

 This is more appropriate for image sharpening than the ideal 

HPF, since this not introduce ringing. 

2n 
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Butterworth HPF example 
 

 

 

 

 

Original Image HPF image, r0  47 

 

 

 
 

 

HPF image, r0  36 HPF image, r0  81 
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u2  v2 

 
 

Gaussian High pass filters 

 
 The form of a Gaussian lowpass filter in two-dimensions is 

given by H (u, v)  1  eD
2 (u ,v) / 22   

, where D(u, v)  is 

the distance from the origin in the frequency plane. 

 The parameter  measures the spread or dispersion of the 

Gaussian curve. Larger the value of , larger the cutoff 

frequency and more severe the filtering. 

 See Example in section 4.4.3 of text for an illustration. 
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Digital Image Processing Module V 

 
 

Derivative operators useful in image segmentation 

Gradient operators: 
 

First-order derivatives of a digital image are based on various approximations of the 2-D 

gradient. The gradient of an image f (x, y) at location (x, y) is defined as the vector 

It is well known from vector analysis that the gradient vector points in the direction of maximum 

rate of change of f at coordinates (x, y). An important quantity in edge detection is the magnitude 

of this vector, denoted by f, where 
 

This quantity gives the maximum rate of increase of f (x, y) per unit distance in the direction of f. It is a 

common (although not strictly correct) practice to refer to f also as the gradient. The direction of the 

gradient vector also is an important quantity. Let α (x, y) represent the direction 

angle of the vector f at (x, y). Then, from vector analysis, 
 

where the angle is measured with respect to the x-axis. The direction of an edge at (x, y) is 

perpendicular to the direction of the gradient vector at that point. Computation of the gradient of 

an image is based on obtaining the partial derivatives f/ x and f/ y at every pixel location. Let the 

3x3 area shown in Fig. 1.1 (a) represent the gray levels in a neighborhood of an image. One of the 

simplest ways to implement a first-order partial derivative at point z5 is to use the following 

Roberts cross-gradient operators: 
 

 
These derivatives can be implemented for an entire image by using the masks shown in Fig. 

1.1(b). Masks of size 2 X 2 are awkward to implement because they do not have a clear center. An 

approach using masks of size 3 X 3 is given by 
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Fig.1.1 A 3 X 3 region of an image (the z’s are gray-level values) and various masks used to 

compute the gradient at point labeled z5. 

A weight value of 2 is used to achieve some smoothing by giving more importance to the center 

point. Figures 1.1(f) and (g), called the Sobel operators, and are used to implement these two 

equations. The Prewitt and Sobel operators are among the most used in practice for computing 

digital gradients. The Prewitt masks are simpler to implement than the Sobel masks, but the latter 

have slightly superior noise-suppression characteristics, an important issue when dealing with 

derivatives. Note that the coefficients in all the masks shown in Fig. 1.1 sum to 0, indicating that 

they give a response of 0 in areas of constant gray level, as expected of a derivative operator. 

The masks just discussed are used to obtain the gradient components Gx and Gy. Computation of 

the gradient requires that these two components be combined. However, this implementation is 

not always desirable because of the computational burden required by squares and square roots. 

An approach used frequently is to approximate the gradient by absolute values: 
 

This equation is much more attractive computationally, and it still preserves relative changes in 

gray levels. However, this is not an issue when masks such as the Prewitt and Sobel masks are 

used to compute Gx and Gy. 

It is possible to modify the 3 X 3 masks in Fig. 1.1 so that they have their strongest responses 

along the diagonal directions. The two additional Prewitt and Sobel masks for detecting 

discontinuities in the diagonal directions are shown in Fig. 1.2. 
90



 
 

Fig.1.2 Prewitt and Sobel masks for detecting diagonal edges 

 

 
The Laplacian: 

 

The Laplacian of a 2-D function f(x, y) is a second-order derivative defined as 
 

For a 3 X 3 region, one of the two forms encountered most frequently in practice is 
 

Fig.1.3 Laplacian masks used to implement Eqns. above. 

 

where the z's are defined in Fig. 1.1(a). A digital approximation including the diagonal neighbors 

is given by 

 

 
Masks for implementing these two equations are shown in Fig. 1.3. We note from these masks that 

the implementations of Eqns. are isotropic for rotation increments of 90° and 45°, respectively. 91



Edge detection. 
 

Intuitively, an edge is a set of connected pixels that lie on the boundary between two regions. 

Fundamentally, an edge is a "local" concept whereas a region boundary, owing to the way it is 

defined, is a more global idea. A reasonable definition of "edge" requires the ability to measure 

gray-level transitions in a meaningful way. We start by modeling an edge intuitively. This will 

lead us to formalism in which "meaningful" transitions in gray levels can be measured. Intuitively, 

an ideal edge has the properties of the model shown in Fig. 2.1(a). An ideal edge according to this 

model is a set of connected pixels (in the vertical direction here), each of which is located at an 

orthogonal step transition in gray level (as shown by the horizontal profile in the figure). 

 

In practice, optics, sampling, and other image acquisition imperfections yield edges that 

are blurred, with the degree of blurring being determined by factors such as the quality of the 

image acquisition system, the sampling rate, and illumination conditions under which the image is 

acquired. As a result, edges are more closely modeled as having a "ramp like" profile, such as the 

one shown in Fig.2.1 (b). 

Fig.2.1 (a) Model of an ideal digital edge (b) Model of a ramp edge. The slope of the ramp is 

proportional to the degree of blurring in the edge. 

 

 
The slope of the ramp is inversely proportional to the degree of blurring in the edge. In this model, 

we no longer have a thin (one pixel thick) path. Instead, an edge point now is any point contained 

in the ramp, and an edge would then be a set of such points that are connected. The "thickness" of 

the edge is determined by the length of the ramp, as it transitions from an initial to a final gray 

level. This length is determined by the slope, which, in turn, is determined by the degree of 

blurring. This makes sense: Blurred edges lend to be thick and sharp edges tend to be thin. Figure 

2.2(a) shows the image from which the close-up in Fig. 2.1(b) was extracted. Figure 2.2(b) shows 

a horizontal gray-level profile of the edge between the two regions. This figure also shows the first 

and second derivatives of the gray-level profile. The first derivative is positive at the points of 

transition into and out of the ramp as we move from left to right along the profile; it is constant for 

points in the ramp; and is zero in areas of constant gray level. The second derivative is positive at 

the transition associated with the dark side of the edge, negative at the transition associated with 

the light side of the edge, and zero along the ramp and in areas of constant gray level. The signs of 

the derivatives in Fig. 2.2(b) would be reversed for an edge that transitions from light to dark. 

 

We conclude from these observations that the magnitude of the first derivative can be used to 

detect the presence of an edge at a point in an image (i.e. to determine if a point is on a ramp). 

Similarly, the sign of the second derivative can be used to determine whether an edge pixel lies 

on the dark or light side of an edge. We note two additional properties of the second derivative 

around an edge: A) It produces two values for every edge in an image (an undesirable feature); 

and B) an imaginary straight line joining the extreme positive and negative values of the second 

derivative would cross zero near the midpoint of the edge. This zero-crossing property of the 

second derivative is quite useful for locating the centers of thick edges. 
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Fig.2.2 (a) Two regions separated by a vertical edge (b) Detail near the edge, showing a gray- 

level profile, and the first and second derivatives of the profile. 

 

Edge linking procedures. 

The different methods for edge linking are as follows 
 

(i) Local processing 
 

(ii) Global processing via the Hough Transform 
 

(iii) Global processing via graph-theoretic techniques. 

(i) Local Processing: 
 

One of the simplest approaches for linking edge points is to analyze the characteristics of pixels in 

a small neighborhood (say, 3 X 3 or 5 X 5) about every point (x, y) in an image that has been 

labeled an edge point. All points that are similar according to a set of predefined criteria are 

linked, forming an edge of pixels that share those criteria. 

The two principal properties used for establishing similarity of edge pixels in this kind of analysis 

are (1) the strength of the response of the gradient operator used to produce the edge pixel; and (2) 

the direction of the gradient vector. The first property is given by the value of f. 

Thus an edge pixel with coordinates (xo, yo) in a predefined neighborhood of (x, y), is similar in 

magnitude to the pixel at (x, y) if 
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The direction (angle) of the gradient vector is given by Eq. An edge pixel at (xo, yo) in the 

predefined neighborhood of (x, y) has an angle similar to the pixel at (x, y) if 

where A is a nonnegative angle threshold. The direction of the edge at (x, y) is perpendicular to 

the direction of the gradient vector at that point. 

A point in the predefined neighborhood of (x, y) is linked to the pixel at (x, y) if both magnitude 

and direction criteria are satisfied. This process is repeated at every location in the image. A 

record must be kept of linked points as the center of the neighborhood is moved from pixel to 

pixel. A simple bookkeeping procedure is to assign a different gray level to each set of linked edge 

pixels. 

(ii) Global processing via the Hough Transform: 
 

In this process, points are linked by determining first if they lie on a curve of specified shape. We 

now consider global relationships between pixels. Given n points in an image, suppose that we 

want to find subsets of these points that lie on straight lines. One possible solution is to first find 

all lines determined by every pair of points and then find all subsets of points that are close to 

particular lines. The problem with this procedure is that it involves finding n(n - 1)/2 ~ n
2 

lines 

and then performing (n)(n(n - l))/2 ~ n
3 

comparisons of every point to all lines. This approach is 

computationally prohibitive in all but the most trivial applications. 

Hough [1962] proposed an alternative approach, commonly referred to as the Hough transform. 

Consider a point (xi, y i) and the general equation of a straight line in slope-intercept form, yi = 

a.xi + b. Infinitely many lines pass through (x i, yi) but they all satisfy the equation yi = a.xi + b for 

varying values of a and b. However, writing this equation as b = -a.xi + yi, and considering the ab- 

plane (also called parameter space) yields the equation of a single line for a fixed pair (xi, yi). 

Furthermore, a second point (xj, yj) also has a line in parameter space associated with it, and this 

line intersects the line associated with (xi, yi) at (a', b'), where a' is the slope and b' the intercept of 

the line containing both (xi, yi) and (xj, yj) in the xy-plane. In fact, all points contained on this line 

have lines in parameter space that intersect at (a', b'). Figure 3.1 illustrates these concepts. 
 

 

 

 

 

 

 
Fig.3.1 (a) xy-plane (b) Parameter space 94



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.2 Subdivision of the parameter plane for use in the Hough transform 

 

The computational attractiveness of the Hough transform arises from subdividing the parameter 

space into so-called accumulator cells, as illustrated in Fig. 3.2, where (amax , amin) and (bmax , 

bmin), are the expected ranges of slope and intercept values. The cell at coordinates (i, j), with 

accumulator value A(i, j), corresponds to the square associated with parameter space coordinates 

(ai , bi). 

Initially, these cells are set to zero. Then, for every point (xk, yk) in the image plane, we let the 

parameter a equal each of the allowed subdivision values on the fl-axis and solve for the 

corresponding b using the equation b = - xk a + yk .The resulting b’s are then rounded off to the 

nearest allowed value in the b-axis. If a choice of ap results in solution bq, we let A (p, q) = A (p, 

q) + 1. At the end of this procedure, a value of Q in A (i, j) corresponds to Q points in the xy- 

plane lying on the line y = ai x + bj. The number of subdivisions in the ab-plane determines the 

accuracy of the co linearity of these points. Note that subdividing the a axis into K increments 

gives, for every point (xk, yk), K values of b corresponding to the K possible values of a. With n 

image points, this method involves nK computations. Thus the procedure just discussed is linear in 

n, and the product nK does not approach the number of computations discussed at the beginning 

unless K approaches or exceeds n. 

A problem with using the equation y = ax + b to represent a line is that the slope 

approaches infinity as the line approaches the vertical. One way around this difficulty is to use the 

normal representation of a line: 

x cosθ + y sinθ = ρ 

 
Figure 3.3(a) illustrates the geometrical interpretation of the parameters used. The use of this 
representation in constructing a table of accumulators is identical to the method discussed for the 
slope-intercept representation. Instead of straight lines, however, the loci are sinusoidal curves in 

the ρθ -plane. As before, Q collinear points lying on a line x cosθj + y sinθj = ρ, yield Q sinusoidal 

curves that intersect at (pi, θj) in the parameter space. Incrementing θ and solving for the 

corresponding p gives Q entries in accumulator A (i, j) associated with the cell determined by (pi, 

θj). Figure 3.3 (b) illustrates the subdivision of the parameter space. 
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Fig.3.3 (a) Normal representation of a line (b) Subdivision of the ρθ-plane into cells 

 
 

The range of angle θ is ±90°, measured with respect to the x-axis. Thus with reference to Fig. 3.3 

(a), a horizontal line has θ = 0°, with ρ being equal to the positive x-intercept. Similarly, a vertical 

line has θ = 90°, with p being equal to the positive y-intercept, or θ = - 90°, with ρ being equal to 

the negative y-intercept. 

(iii) Global processing via graph-theoretic techniques 
 

In this process we have a global approach for edge detection and linking based on representing 

edge segments in the form of a graph and searching the graph for low-cost paths that correspond 

to significant edges. This representation provides a rugged approach that performs well in the 

presence of noise. 

 

 

 

Fig.3.4 Edge clement between pixels p and q 

We begin the development with some basic definitions. A graph G = (N,U) is a finite, nonempty 

set of nodes N, together with a set U of unordered pairs of distinct elements of N. Each pair (ni, nj) 

of U is called an arc. A graph in which the arcs are directed is called a directed graph. If an arc is 

directed from node ni to node nj, then nj is said to be a successor of the parent node ni. The 

process of identifying the successors of a node is called expansion of the node. In each graph we 
define levels, such that level 0 consists of a single node, called the start or root node, and the 

nodes in the last level are called goal nodes. A cost c (ni, n j) can be associated with every arc (ni, 

nj). A sequence of nodes n1, n2... nk, with each node ni being a successor of node ni-1 is called a 

path from n1 to nk. The cost of the entire path is 

 

 
 

he following discussion is simplified if we define an edge element as the boundary between two 

pixels p and q, such that p and q are 4-neighbors, as Fig.3.4 illustrates. Edge elements are 

identified by the xy-coordinates of points p and q. In other words, the edge element in Fig. 3.4 is 96



defined by the pairs (xp, yp) (x q, yq). Consistent with the definition an edge is a sequence of 

connected edge elements. 

We can illustrate how the concepts just discussed apply to edge detection using the 3 

X 3 image shown in Fig. 3.5 (a). The outer numbers are pixel 

 

 

 

Fig.3.5 (a) A 3 X 3 image region, (b) Edge segments and their costs, (c) Edge corresponding 

to the lowest-cost path in the graph shown in Fig. 3.6 

 

 
coordinates and the numbers in brackets represent gray-level values. Each edge element, defined 

by pixels p and q, has an associated cost, defined as 

where H is the highest gray-level value in the image (7 in this case), and f(p) and f(q) are the gray- 

level values of p and q, respectively. By convention, the point p is on the right-hand side of the 

direction of travel along edge elements. For example, the edge segment (1, 2) (2, 2) is between 

points (1, 2) and (2, 2) in Fig. 3.5 (b). If the direction of travel is to the right, then p is the point 

with coordinates (2, 2) and q is point with coordinates (1, 2); therefore, c (p, q) = 7 - [7 

- 6] = 6. This cost is shown in the box below the edge segment. If, on the other hand, we are 

traveling to the left between the same two points, then p is point (1, 2) and q is (2, 2). In this case 

the cost is 8, as shown above the edge segment in Fig. 3.5(b). To simplify the discussion, we 

assume that edges start in the top row and terminate in the last row, so that the first element of an 

edge can be only between points (1, 1), (1, 2) or (1, 2), (1, 3). Similarly, the last edge element has 

to be between points (3, 1), (3, 2) or (3, 2), (3, 3). Keep in mind that p and q are 4-neighbors, as 

noted earlier. Figure 3.6 shows the graph for this problem. Each node (rectangle) in the graph 

corresponds to an edge element from Fig. 3.5. 
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-   An arc exists between two nodes if the two corresponding edge elements taken in succession 

can be part of an edge. 
 

 

3.6 Graph for the image in Fig.3.5 (a). The lowest-cost path is shown dashed. 

 

 
As in Fig. 3.5 (b), the cost of each edge segment, is shown in a box on the side of the arc leading 

into the corresponding node. Goal nodes are shown shaded. The minimum cost path is shown 

dashed, and the edge corresponding to this path is shown in Fig. 3.5 (c). 

 
Thresholding. 

Thresholding: 
 

Because of its intuitive properties and simplicity of implementation, image thresholding enjoys a 

central position in applications of image segmentation. 

Global Thresholding: 
 

The simplest of all thresholding techniques is to partition the image histogram by using a single 

global threshold, T. Segmentation is then accomplished by scanning the image pixel by pixel and 

labeling each pixel as object or back-ground, depending on whether the gray level of that pixel is 

greater or less than the value of T. As indicated earlier, the success of this method depends 

entirely on how well the histogram can be partitioned. 
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Digital Image Processing Question & Answers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.1 FIGURE 10.28 (a) Original image, (b) Image histogram, (c) Result of global 

thresholding with T midway between the maximum and minimum gray levels. 

Figure 4.1(a) shows a simple image, and Fig. 4.1(b) shows its histogram. Figure 4.1(c) shows the 

result of segmenting Fig. 4.1(a) by using a threshold T midway between the maximum and 

minimum gray levels. This threshold achieved a "clean" segmentation by eliminating the shadows 

and leaving only the objects themselves. The objects of interest in this case are darker than the 

background, so any pixel with a gray level ≤ T was labeled black (0), and any pixel with a gray 

level ≥ T was labeled white (255).The key objective is merely to generate a binary image, so the 

black-white relationship could be reversed. The type of global thresholding just described can be 

expected to be successful in highly controlled environments. One of the areas in which this often 

is possible is in industrial inspection applications, where control of the illumination usually is 

feasible. 
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The threshold in the preceding example was specified by using a heuristic 

approach, based on visual inspection of the histogram. The following algorithm can be used to 

obtain T automatically: 

1. Select an initial estimate for T. 

2. Segment the image using T. This will produce two groups of pixels: G1 consisting of all pixels 

with gray level values >T and G2 consisting of pixels with values < T. 

3. Compute the average gray level values µ1 and µ2 for the pixels in regions G1 and G2. 

 

4. Compute a new threshold value: 
 

5. Repeat steps 2 through 4 until the difference in T in successive iterations is smaller than 

a predefined parameter To. 

When there is reason to believe that the background and object occupy comparable areas in the 

image, a good initial value for T is the average gray level of the image. When objects are small 

compared to the area occupied by the background (or vice versa), then one group of pixels will 

dominate the histogram and the average gray level is not as good an initial choice. A more 

appropriate initial value for T in cases such as this is a value midway between the maximum and 

minimum gray levels. The parameter To is used to stop the algorithm after changes become small 

in terms of this parameter. This is used when speed of iteration is an important issue. 

Basic adaptive thresholding process used in image segmentation. 
 

Basic Adaptive Thresholding: 
 

Imaging factors such as uneven illumination can transform a perfectly segmentable histogram 

into a histogram that cannot be partitioned effectively by a single global threshold. An approach 

for handling such a situation is to divide the original image into subimages and then utilize a 

different threshold to segment each subimage. The key issues in this approach are how to 

subdivide the image and how to estimate the threshold for each resulting subimage. Since the 

threshold used for each pixel depends on the location of the pixel in terms of the subimages, this 

type of thresholding is adaptive. 
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Fig.5 (a) Original image, (b) Result of global thresholding. (c) Image subdivided into 

individual subimages (d) Result of adaptive thresholding. 

We illustrate adaptive thresholding with a example. Figure 5(a) shows the image, which we 

concluded could not be thresholded effectively with a single global threshold. In fact, Fig. 5(b) 

shows the result of thresholding the image with a global threshold manually placed in the valley of 

its histogram. One approach to reduce the effect of nonuniform illumination is to subdivide the 

image into smaller subimages, such that the illumination of each subimage is approximately 

uniform. Figure 5(c) shows such a partition, obtained by subdividing the image into four equal 

parts, and then subdividing each part by four again. All the subimages that did not contain a 

boundary between object and back-ground had variances of less than 75. All subimages containing 

boundaries had variances in excess of 100. Each subimage with variance greater than 100 was 

segmented with a threshold computed for that subimage using the algorithm. The initial 

value for T in each case was selected as the point midway between the minimum and maximum 

gray levels in the subimage. All subimages with variance less than 100 were treated as one 

composite image, which was segmented using a single threshold estimated using the same 

algorithm. The result of segmentation using this procedure is shown in Fig. 5(d). 

With the exception of two subimages, the improvement over Fig. 5(b) is evident. The boundary 

between object and background in each of the improperly segmented subimages was small and 

dark, and the resulting histogram was almost unimodal. 

 

 
Threshold selection based on boundary characteristics. 

 
Use of Boundary Characteristics for Histogram Improvement and Local Thresholding: 

 

It is intuitively evident that the chances of selecting a "good" threshold are enhanced considerably 

if the histogram peaks are tall, narrow, symmetric, and separated by deep valleys. One approach 

for improving the shape of histograms is to consider only those pixels that lie on or near the edges 

between objects and the background. An immediate and obvious improvement is that histograms 

would be less dependent on the relative sizes of objects and the background. For instance, the 

histogram of an image composed of a small object on a large background area (or vice versa) 

would be dominated by a large peak because of the high concentration of one type of pixels. 

 

If only the pixels on or near the edge between object and the background were used, the 

resulting histogram would have peaks of approximately the same height. In addition, the 

probability that any of those given pixels lies on an object would be approximately equal to the 

probability that it lies on the back-ground, thus improving the symmetry of the histogram peaks. 

Finally, as indicated in the following paragraph, using pixels that satisfy 

some simple measures based on gradient and Laplacian operators has a tendency to deepen the 

valley between histogram peaks. 

The principal problem with the approach just discussed is the implicit assumption that the edges 

between objects and background arc known. This information clearly is not available during 

segmentation, as finding a division between objects and background is precisely what 

segmentation is all about. However, an indication of whether a pixel is on an edge may be 

obtained by computing its gradient. In addition, use of the Laplacian can yield information 

regarding whether a given pixel lies on the dark or light side of an edge. The average value of the 

Laplacian is 0 at the transition of an edge, so in practice the valleys of histograms formed from 

 
the pixels selected by a gradient/Laplacian criterion can be expected to be sparsely populated. 
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This property produces the highly desirable deep valleys. 

The gradient at any point (x, y) in an image can be found. Similarly, the Laplacian 
2
f can also be 

found. These two quantities may be used to form a three-level image, as follows: 
 

where the symbols 0, +, and - represent any three distinct gray levels, T is a threshold, and the 

gradient and Laplacian are computed at every point (x, y). For a dark object on a light background, 

the use of the Eqn. produces an image s(x, y) in which (1) all pixels that are not on an edge (as 

determined by being less than T) are labeled 0; (2) all pixels on the dark side of an edge are 

labeled +; and (3) all pixels on the light side of an edge are labeled -. The symbols + and - in Eq. 

above are reversed for a light object on a dark background. Figure 6.1 shows the labeling 

produced by Eq. for an image of a dark, underlined stroke written on a light background. 

 

 
The information obtained with this procedure can be used to generate a segmented, 

binary image in which l's correspond to objects of interest and 0's correspond to the background. 

The transition (along a horizontal or vertical scan line) from a light background to a dark object 

must be characterized by the occurrence of a - followed by a + in s (x, y). The interior of the 

object is composed of pixels that are labeled either 0 or +. Finally, the transition from the object 

back to the background is characterized by the occurrence of a + followed by a -. Thus a 

horizontal or vertical scan line containing a section of an object has the following structure: 
 

 

 

. 

Fig.6.1 Image of a handwritten stroke coded by using Eq. discussed above 
 

where (…) represents any combination of +, -, and 0. The innermost parentheses contain object 

points and are labeled 1. All other pixels along the same scan line are labeled 0, with the exception 

of any other sequence of (- or +) bounded by (-, +) and (+, -). 
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Fig.6.2 (a) Original image, (b) Image segmented by local thresholding. 

 
figure 6.2 (a) shows an image of an ordinary scenic bank check. Figure 

6.3 shows the histogram as a function of gradient values for pixels with gradients greater than 5. Note that this histogram 

has two dominant modes that are symmetric, nearly of the same height, and arc separated by a distinct valley. Finally, 

Fig. 6.2(b) shows the segmented image obtained by with T at or near the midpoint of the valley. Note that this example is 

an illustration of local thresholding, because the value of T was determined from a histogram of the gradient and 

Laplacian, which are local properties. 

 

 
 

Fig.6.3 Histogram of pixels with gradients greater than 5 

 

Region based segmentation. 

Region-Based Segmentation: 
 

The objective of segmentation is to partition an image into regions. We approached this problem 

by finding boundaries between regions based on discontinuities in gray levels, whereas 

segmentation was accomplished via thresholds based on the distribution of pixel properties, such 

as gray-level values or color. 

Basic Formulation: 

Let R represent the entire image region. We may view segmentation as a process that partitions R 

into n subregions, R1, R 2..., Rn, such that 
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Here, P (Ri) is a logical predicate defined over the points in set Ri and Ǿ` is the null set. Condition 

(a) indicates that the segmentation must be complete; that is, every pixel must be in a region. 

Condition (b) requires that points in a region must be connected in some predefined sense. 

Condition (c) indicates that the regions must be disjoint. Condition (d) deals with the properties 

that must be satisfied by the pixels in a segmented region—for example P (Ri) = TRUE if all 

pixels in Ri, have the same gray level. Finally, condition (c) indicates that regions Ri and Rj are 

different in the sense of predicate P. 

 

 
Region Growing: 

 

As its name implies, region growing is a procedure that groups pixels or subregions into larger 

regions based on predefined criteria. The basic approach is to start with a set of "seed" points and 

from these grow regions by appending to each seed those neighboring pixels that have properties 

similar to the seed (such as specific ranges of gray level or color). When a priori information is not 

available, the procedure is to compute at every pixel the same set of properties that ultimately will 

be used to assign pixels to regions during the growing process. If the result of these computations 

shows clusters of values, the pixels whose properties place them near the centroid of these clusters 

can be used as seeds. 

The selection of similarity criteria depends not only on the problem under consideration, but also 

on the type of image data available. For example, the analysis of land-use satellite imagery 

depends heavily on the use of color. This problem would be significantly more difficult, or even 

impossible, to handle without the inherent information available in color images. When the images 

are monochrome, region analysis must be carried out with a set of descriptors based on gray levels 

and spatial properties (such as moments or texture). 

Basically, growing a region should stop when no more pixels satisfy the criteria for inclusion in 

that region. Criteria such as gray level, texture, and color, are local in nature and do not take into 

account the "history" of region growth. Additional criteria that increase the power of a region- 

growing algorithm utilize the concept of size, likeness between a candidate pixel and the pixels 

grown so far (such as a comparison of the gray level of a candidate and the average gray level of 

the grown region), and the shape of the region being grown. The use of these types of descriptors 

is based on the assumption that a model of expected results is at least partially available. 

 

Figure 7.1 (a) shows an X-ray image of a weld (the horizontal dark region) containing several 

cracks and porosities (the bright, white streaks running horizontally through the middle of the 

image). We wish to use region growing to segment the regions of the weld failures. These 

segmented features could be used for inspection, for inclusion in a database of historical studies, 

for controlling an automated welding system, and for other numerous applications. 104



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.1 (a) Image showing defective welds, (b) Seed points, (c) Result of region growing, (d) 

Boundaries of segmented ; defective welds (in black). 

 
The first order of business is to determine the initial seed points. In this application, it is known 

that pixels of defective welds tend to have the maximum allowable digital value B55 in this case). 

Based on this information, we selected as starting points all pixels having values of 255. The 

points thus extracted from the original image are shown in Fig. 10.40(b). Note that many of the 

points are clustered into seed regions. 

The next step is to choose criteria for region growing. In this particular 

example we chose two criteria for a pixel to be annexed to a region: (1) The absolute gray-level 

difference between any pixel and the seed had to be less than 65. This number is based on the 

histogram shown in Fig. 7.2 and represents the difference between 255 and the location of the first 

major valley to the left, which is representative of the highest gray level value in the dark weld 

region. (2) To be included in one of the regions, the pixel had to be 8-connected to at least one 

pixel in that region. 

If a pixel was found to be connected to more than one region, the 

regions were merged. Figure 7.1 (c) shows the regions that resulted by starting with the seeds in 

Fig. 7.2 (b) and utilizing the criteria defined in the previous paragraph. Superimposing the 

boundaries of these regions on the original image [Fig. 7.1(d)] reveals that the region-growing 

procedure did indeed segment the defective welds with an acceptable degree of accuracy. It is of 

interest to note that it was not necessary to specify any stopping rules in this case because the 

criteria for region growing were sufficient to isolate the features of interest. 
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Region Splitting and Merging: 
 

The procedure just discussed grows regions from a set of seed points. An alternative is to 

subdivide an image initially into a set of arbitrary, disjointed regions and then merge and/or split 

the regions in an attempt to satisfy the conditions. A split and merge algorithm that iteratively 

works toward satisfying these constraints is developed. 

Let R represent the entire image region and select a predicate P. One approach for segmenting R is 

to subdivide it successively into smaller and smaller quadrant regions so that, for any region Ri, 

P(Ri) = TRUE. We start with the entire region. If P(R) = FALSE, we divide the image into 

quadrants. If P is FALSE for any quadrant, we subdivide that quadrant into subquadrants, and so 

on. This particular splitting technique has a convenient representation in the form of a so-called 

quadtree (that is, a tree in which nodes have exactly four descendants), as illustrated in Fig. 7.3. 

Note that the root of the tree corresponds to the entire image and that each node corresponds to a 

subdivision. In this case, only R4 was subdivided further. 
 

Fig. 7.3 (a) Partitioned image (b) Corresponding quadtree. 

 

 
If only splitting were used, the final partition likely would contain adjacent regions with identical 

properties. This drawback may be remedied by allowing merging, as well as splitting. Satisfying 

the constraints, requires merging only adjacent regions whose combined pixels satisfy the 

predicate P. That is, two adjacent regions Rj and R k are merged only if P (Rj U Rk) = TRUE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
fig.7.2 Histogram of Fig. 7.1 (a) 
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The preceding discussion may be summarized by the following procedure, in which, at any step 

we 

1. Split into four disjoint quadrants any region Ri, for which P (Ri) = FALSE. 

2. Merge any adjacent regions Rj and Rk for which P (Rj U Rk) = TRUE. 

3. Stop when no further merging or splitting is possible. 
 

Several variations of the preceding basic theme are possible. For example, one possibility is to 

split the image initially into a set of blocks. Further splitting is carried out as described previously, 

but merging is initially limited to groups of four blocks that are descendants in the quadtree 

representation and that satisfy the predicate P. When no further mergings of this type are possible, 

the procedure is terminated by one final merging of regions satisfying step 2. At this point, the 

merged regions may be of different sizes. The principal advantage of this approach is that it uses 

the same quadtree for splitting and merging, until the final merging step. 
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Digital image processing :Morphological operations 
 

The term morphology is being used in a variety of streams like linguistics, biology, astronomy, mathematics, and it is also used with 

prefixes like Geo-morphology, River morphology, urban morphology, etc. The term morphology used in image processing refers to the 

tools which are developed using the theory developed as part of mathematical morphology. 

 
 

Morphology 
In its most general form, the term morphology refers to a branch of biology 

that deals with Form and Structure of animals and plants. 

Mathematical 

Morphology 

The term has been used in mathematics where it deals with Form and 

Structure of regions. 

Morphology in 

Image 

Processing 

 

In image processing the term morphology deals with developing tools for 

extracting Form and Structure of image regions (objects). 

 

Extraction of features from in image is the first step towards image analysis. Morphology plays an important role in image processing 

because it can be used to develop techniques for feature extraction in binary images. 

 

 

 

 

Image components generally used for describing region 

shapes are: 

 

 Boundaries

 Skeletons

 Convex Hulls
 

Morphological techniques are used for pre-processing and post-processing: 

 
 to identify and enhance useful features,

 

 to discard (prune) noisy features.

 
Mathematical operations are applied to shapes/ objects. But how to represent shapes or objects in images? 

 

Objects in Morphology 

 Objects are represented as Sets.

 

 For binary images, each element of a set is (x;y) coordinates of white/ black pixel. These elements are (2-D integer space). 

Note that we don't have to explicitly code the binary value as part of the pixel representation. Since there are only 2 possible 

pixels (black or white) in the image, we can form a set of white pixels. All other pixels are implied to be black.

 

 For grayscale images such sets are i.e. 3-D integer space. The first 2 integers in the 3-tuple are the x,y coordinates and the 
third integer is the intensity value.

 

 

 

Morphology involves the use of subimages called as structuring elements. The pixels in a structuring element can have values 0 (black), 1 

(white), or may even be don't care (either black or white). The structuring element is used to assess or probe the attributes and properties of 

the images under study. 

 
The origin of the structuring element is generally taken as the center of the rectangular array which contains the structuring element. 

However the origin need not be specified as the center. Changing the origin of the structuring element also changes the output of the 

morphological operations. 108



 We talk of morphological operations between two image objects.

 The first one is the object/ region under study.

 

 The second one is an object (a subimage depicting a region) used to probe the first one to identify its structural characteristics.

 All sets are padded with background elements to form a rectangular array or to provide a background border.

 
The structuring element is also called as a mask or a kernel. 

 

 
Figure 1: Complement of a set 

 
Translation and reflection are set operations which do not involve any structuring element. Translation of a set means that each element of 

the set is displaced by a fixed translation distance. Reflection of a set means that the coordinate of each pixel will shift to the other side of 

the axis. So x becomes - x and y becomes - y. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The basic morphological operations which can be performed using a structuring element are erosion and dilation. 

Reflection of a set 
The reflection of a set B is denoted as  

 

 
 

 

 

 

Translation of a set 
 

The translation of a set B by is denoted as 

 

 
 
 

 
Set intersection 

 
 
This is the traditional intersection of two sets. If the sets indicate image regions, then 

their intersection would give the region overlap. 

 

Set union 

 

 
This is the traditional union of two sets. If the sets indicate image regions, then their 

union would give the aggregate of the two regions. 
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Figure 2: Reflection of a set. 
 

Figure 3: Translation of a set 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Union of two sets A and B 

 
Alternatively it can be formulated as: 110



 

 

Erosion can be viewed as a morphological filtering operation. Image details smaller than the structuring element B are filtered 

out (removed) from the image. 

 

 

Figure 8: Dilation of a set A using structuring element B. 

 
Dilation of a given set (equivalently the region) yields all the points where the origin of the structuring element can be placed while 

satisfying the condition that there is some overlap of the 

structuring element with the given region. 

 
Erosion of a set shrinks it while dilation expands it. There exists a duality between erosion and dilation. If we erode a set and then take its 

complement, the result will be the same as dilating the set's complement i.e. the background. 

 
Dilation of a subimage(set) A, by a subimage(set) B is 

 

 
As a result of dilation 

 

 Extra elements are added to A i.e. it grows (dilates) as long as  overlaps with A.

 The amount of dilation depends on the size of B. Larger the B  more dilation.

 

The dilation operation is denoted by the symbol      and defined as:  
 

Alternatively it can be formulated as: 

 

 

Dilation can be viewed as a morphological "reconstruction" operation. Image details smaller than the structuring element 

B are filled-up in the image. 

 

 

 

 

Analogy with convolution 

 Dilation involves flipping B about its origin and then successively displacing it so that it slides over A.

 

 If SE is symmetric  111



Duality between Erosion and Dilation 

The erosion and dilation operations are dual of each other. 

 

 
Opening of a set by a structuring element yields all the points where the structuring element would overlap (encompass) while satisfying 

the condition that the structuring element is completely within the set. Opening is performed by applying erosion followed by dilation. 

Closing is performed by applying dilation followed by erosion. 

 
We give here a comparison of the opening and closing operations. 

 
Opening Closing 

 Smooths contours of an image 

 

 Breaks narrow isthmuses 

 

 Eliminates thin protrusions 

 Smooths sections of contours 

 Fuses narrow breaks and long thin 

gulfs 

 Eliminates small holes and fills gaps in 

the contour. 

 

 

 

Figure 9: Opening of a set A using structuring element B. 

 
 

1.  

2. Roll B on the inside of the boundary of A. 

 

3. New boundary on A is defined by points on B which are 

closest to the boundary of A. 

 

1.  

2. Roll B on the outside of the boundary of A. 

 

3. New boundary on A is defined by points on B 

which are closest to the boundary of A. 

 

Consider the closing operation. Dilation expands a set and erosion shrinks it. It seems that the result will be the same as the 

original set since we have applied two opposite operations. But this does not happen if the original set has got grooves or gulfs 

which are smaller in size compared to the structuring element. Once the gulf gets filled up because of dilation, subsequent 

erosion will not be able to reconstruct it. 

 

DUALITY between opening and closing 

Opening and closing are dual operations. Closing a set and then taking its complement will yield the same result as opening 

the complement of the set with the same structuring element. 
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The opening operation satisfies the following properties: 
 
 

 

Figure 10: Closing of a set A using structuring element B. 

 

1)  is a subset (subimage) of A. 

2) If C is a subset of D, then is a subset of 

3) 

The closing operation satisfies the following properties: 

 

1) A is a subset (subimage) of  

2) If C is a subset of D, then  is a subset of 

 

 

The Hit-or-Miss transform is used for detecting shapes. It uses two structuring elements. 

 
1. The    first     one     contains     the     foreground     shape     of     the     object     which     is     to     be     detected. 

 

2. The second structuring element contains the background shape around the object which is to be detected. It is like a window 

frame (a thin strip of background) to the foreground in the first structuring element. The background pixels in this mask are 

marked with foreground intensity and the object pixels with background intensity. 

 
At any point on the given image, 

 
if the foreground matches with the first structuring element 

AND 

if the complement (i.e. the background) matches with the second structuring element, then we can say that the object shape 

exists at that point. 

 
The set of points where a structuring element fits can be identified by eroding the given image with 
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Figure 11: The set M is the union of sets A,B, C, D, E, F, G. The object we want to detect is D. Hence we use a 

structuring element which is same as D. The element W has been chosen slightly larger than D so that W - D gives a 

thin strip of background surrounding set D. 

 
the structuring element. 

 

Mathematical formulation 

Given a shape A with 3 components shapes C, D, E. What is the location of D? 

 
 Step 1: Detect where shape D can be. We might detect larger shapes in which D is contained. 

 

 Step 2: Verify if background (fitting D) is present exactly around this shape. 

 
Mathematically Hit-or-Miss transform is: 

 
 

 

The procedure is illustrated in Fig 11 to 14. 

 
Several features can be extracted from the image using the five basic morphological operations of dilation, erosion, opening, closing, and 

hit-or-miss transform. 

114

http://nptel.ac.in/courses/106105032/images/gh-686.jpg
http://nptel.ac.in/courses/106105032/images/gh-687.jpg


CS 463 MODULE VI 

 Page 1 

 

 

 

Morphological Image Processing 

 Morphology is concerned with image analysis methods whose 

outputs describe image content (i.e. extract “meaning” from an 

image). 

 Mathematical morphology is a tool for extracting image 

components that can be used to represent and describe region 

shapes such as boundaries and skeletons. 

 Morphological methods include filtering, thinning and pruning. 

These techniques are based on set theory. All morphology 

functions are defined for binary images, but most have natural 

extension to grayscale images. 

 
Basic Concepts of Set Theory 

A set is specified by the elements between two braces: { }. The elements 

of the sets are the coordinates (x,y) of pixels representing objects or other 

features in an image. 

Let A be a set in 2D image space Z2: 

 If a = (a1 , a2) is an element of A, then 𝑎 ∈ 𝐴 

 If a is not an element of A, then 𝑎 ∈ 𝐴 

 Empty set is a set with no elements and is denoted by ∅ 

 If every element of a set A is also an element of another set B, then 

A is said to be a subset of B, denoted as 𝐴 ⊆ 𝐵 

 The union of two sets A and B, denoted by 𝐶 = 𝐴 𝖴 𝐵 

 The intersection of two sets A and B, denoted by 𝐶 = 𝐴 ∩ 𝐵 

 Two sets A and B are said to be disjoint, if they have no common 

elements. This is denoted by 𝐴 ∩ 𝐵 = ∅ 
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 The complement of a set A is the set of elements not contained in A. 

This is denoted by 𝐴𝑐 = {w | w ∉ 𝐴 } 

 The difference of two sets A and B, denoted A – B, is defined as 

𝐴 − 𝐵 = {w | w ∈ 𝐴, w ∉ 𝐵} = 𝐴 ∩ 𝐵𝑐 

 The reflection of set B, denoted  B̂  , is defined as 

B̂   = {w | w = −𝑏,  for 𝑏  ∈ 𝐵} 

 The translation of set A by point z = (z1 , z2), denoted (A)z is 

defined as (𝐴)𝑧 = {𝑐 | 𝑐 = 𝑎 + 𝑧, for 𝑎 ∈ 𝐴} 

The figure below illustrates the preceding concepts. 

 

 

Figure 11.1 Basic concepts of Set Theory 
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Logic Operations Involving Binary Images 

A binary image is an image whose pixel values are 0 (representing black) 

or 1 (representing white, i.e. 255). The usual set operations of 

complement, union, intersection, and difference can be defined easily in 

terms of the corresponding logic operations NOT, OR and AND. For 

example: 

 Intersection operation ⋂ is implemented by AND operation 

 Union operation ⋃ is implemented by OR operation 

The figure below shows an example of using logic operations to perform 

set operations on two binary images. 

  
(a) (b) 

a & b a | b a – b = a & bc 

Figure 11.2 Using logic operations for applying set operations on two binary images 
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1 

1 

1 

 

Structuring Element 

A morphological operation is based on the use of a filter-like binary 

pattern called the structuring element of the operation. Structuring 

element is represented by a matrix of 0s and 1s; for simplicity, the zero 

entries are often omitted. 

Symmetric with respect to its origin: 

Lines: 

1 

1 1 

= 1 

1 1 

1 

 

Diamond: 

0 1 0 

1 1 1 

0 1 0 
 

Non-symmetric: 

1 1 

1 1 1 1 1 

1 1 

1 

Reflection 

on origin 
 

 

1 1 

1 1 1 1 1 

1 
 

Dilation 

Dilation is an operation used to grow or thicken objects in binary images. 

The dilation of a binary image A by a structuring element B is defined as: 

𝐴 ⊕ 𝐵 = { 𝑧 ∶ ( B̂ )
𝑧  

∩ 𝐴 ≠ ∅ } 

This equation is based on obtaining the reflection of B about its origin 

and translating (shifting) this reflection by z. Then, the dilation of A by B 

0 0 0 0 1 

0 0 0 1 0 

0 0 1 0 0 

0 1 0 0 0 

1 0 0 0 0 
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is the set of all structuring element origin locations where the reflected 

and translated B overlaps with A by at least one element. 

 
Example: Use the following structuring element to dilate the binary 

image below. 

1 
1 

 

1 
1 

Structuring element 

 

 

 

 
Binary image 

 

Solution: 

We find the reflection of B: 
 

B = 1 

1 
In this case B̂   = B 

1 

1 

 

 

 

 

 
𝐴 ⊕ 𝐵 = 

1 

1 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 1 0 0 0 

0 0 0 1 1 1 1 1 1 0 0 0 

0 0 0 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 1 1 1 0 

0 0 0 0 1 1 1 1 1 1 1 0 

0 0 0 1 1 1 1 1 1 1 1 0 

0 0 1 1 1 1 1 1 1 1 0 0 

0 1 1 1 1 1 1 1 1 0 0 0 

0 1 1 1 1 1 1 1 0 0 0 0 

0 1 1 1 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 
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Dilation can be used for bridging gaps, for example, in broken/unclear 

characters as shown in the figure below. 

 

(a) 
 
 

(b) (b) 

Figure 11.3 (a) Broken-text binary image. (b) Dilated image. 

120



CS 463 MODULE VI 

 Page 7 

 

 

 

Erosion 

Erosion is used to shrink or thin objects in binary images. The erosion of 

a binary image A by a structuring element B is defined as: 

𝐴 ⊖ 𝐵 = { 𝑧 ∶ (𝐵)𝑧 ∩ 𝐴𝑐 ≠ ∅ } 

The erosion of A by B is the set of all structuring element origin locations 

where the translated B does not overlap with the background of A. 

 
Example: Use the following structuring element to erode the binary 

image below. 

 

 
1 

1 

1 
Structuring 

element 

 

 

Binary image 

 

Solution 

 

 

 

 
𝐴 ⊖ 𝐵 = 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 1 0 0 0 

0 0 0 1 1 1 1 1 1 0 0 0 

0 0 0 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 
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Erosion can be used to remove isolated features (i.e. irrelevant detail) 

which may include noise or thin edges as shown in the figure below. 

  
(a) (b) 

Figure 11.4 (a) Binary image. (b) Eroded image. 

 

 

 
Combining Dilation & Erosion - Opening Morphology 

The opening operation erodes an image and then dilates the eroded image 

using the same structuring element for both operations, i.e. 

𝐴 ∘ 𝐵 = (𝐴 ⊖ 𝐵) ⊕ 𝐵 

where A is the original image and B is the structuring element. 

The opening operation is used to remove regions of an object that cannot 

contain the structuring element, smooth objects contours, and breaks thin 

connections as shown in the figure below. 

(a) 
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(b) 
 

(c) 
Figure 11.5 (a) Original binary image. (b) Result of opening with square structuring element 

of size 10 pixels. (c) Result of opening with square structuring element of size 20 pixels. 

 

The opening operation can also be used to remove small objects in an 

image while preserving the shape and size of larger objects as illustrated 

in the figure below. 
 

(a) (b) 
Figure 11.6 (a) Original binary image. (b) Result of opening with square structuring element 

of size 13 pixels. 
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Combining Dilation & Erosion - Closing Morphology 

The closing operation dilates an image and then erodes the dilated image 

using the same structuring element for both operations, i.e. 

𝐴 • 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵 

where A is the original image and B is the structuring element. 

The closing operation fills holes that are smaller than the structuring 

element, joins narrow breaks, fills gaps in contours, and smoothes objects 

contours as shown in the figure below. 

 
(a) 

 

(b) 

Figure 11.7 (a) Result of closing with square structuring element of size 10 pixels. (c) Result 

of closing with square structuring element of size 20 pixels. 

 

 

 

Combining Opening & Closing Morphology 

Combining opening and closing can be quite effective in removing noise 

as illustrated in the next figure. 

124



CS 463 MODULE VI 

 Page 11 

 

 

 

 
(a) 

(b) (c) 
Figure 11.8 (a) Noisy fingerprint. (b) Result of opening (a) with square structuring element of 

size 3 pixels. (c) Result of closing (b) with the same structuring element. 

 

Note that the noise was removed by opening the image, but this process 

introduced numerous gaps in the ridges of the fingerprint. These gaps can 

be filled by following the opening with a closing operation. 
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