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ABOUT DEPARTMENT
4 Established in: 2002

¢ Course offered : B.Tech in Computer Science and Engineering
M.Tech in Computer Science and Engineering
M.Tech in Cyber Security

4 Approved by AICTE New Delhi and Accredited by NAAC

€ Affiliated to A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

. To Impart Quality Education by creative Teaching Learning Process

. To Promote cutting-edge Research and-Development Process to solve real world problems with
emerging technologies.
To Inculcate Entrepreneurship Skills among Students.

. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEOL: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering
through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages,
Web Services, System Tools and Components as per needs and specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by
learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,
Teamworkand leadership qualities.
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PROGRAM OUTCOMES (POS)
Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

.Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

.Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSOL1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-
time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality
System Software Tools and Efficient Web Design Models with a focus on performance
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optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software
products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create
innovative career path and for the socially relevant issues.

COURSE OUTCOMES

COURSE OUTCOMES
Acquire knowledge on different methods for image acquisition, storage and
representation in digital devices and computers
Appreciate role of image transforms in representing, highlighting, and
modifying image features
Interpret the mathematical principles in digital image enhancement and
apply them in spatial domain and frequency domain
Apply various methods for segmenting image and identifying image
components
Summarize different reshaping operation on the image and their practical
applications
Identify image representation techniques that enables encoding and
decoding images

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES
CO’S [ PO1 [ PO2 [ PO3 | PO4 | PO5 106 Pm\oe PO9 [ PO10
2 - - -

2
3
2
2

2.

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1
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SYLLABUS

Course Chniar N L-T-P- Year of
code i Credits | Introduction|

CS463 DIGITAL IMAGE PROCESSING 3-0-0-3 2016

‘Course Objectives:
e To introduce and discuss the fundamental concepts and applications of Digital Image
Processing.

e To discuss various basic operations in Digital Image Processing.
Syllabus:

Introduction on digital image processing fundamentals; Image Transforms; Spatial and frequency
domain filtering; Image segmentation; Morphological Image processing; Representation and
Description.

Expected Outcome
The Students will be able to :
i. compare different methods for image acquisition, storage and representation in digital
devices and computers
appreciate role of image transforms in representing, highlighting, and modifying image
features
iii.  interpret the mathematical principles in digital image enhnncement and apply them in
spatial domain and frequency domain
iv.  apply various methods for segmenting image and id ing image components
v.  summarise different reshaping operations on the image and their practical applications
vi. identify image representation lcchniqpﬁ that en; encoding and decoding images
4

g

Text Books:

1. A K. Jain, Fundamentals of digital image processing, Prentice Hall of India, 1989.

2. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing (English) 3rd Edition,
Pearson India, 2013.

References:

1. Al Bovik, The Essential Guide to Image Processing, Academic Press, 2009.

2. Milan Sonka, Vaclay Hlavac and Roger Boyle, Image Processing, Analysis, and Machine
Vision, Thomson Learning, 2008.

3. S Jayaraman, S EsakKirajan and T Veerakumar, Digital Image Procesing, McGraw Hill
Education , 2009.

COURSE PLAN

Module Contents

Introduction to Image processing: Fundamental steps in
image processing: Components of image processing
system; Pixels; coordinate conventions; Imaging
Geometry; Spatial Domain; Frequency Domain;
sampling and quantization; Basic relationship between
pixels; Applications of Image Processing.
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Image transforms and its properties — Unitary
transform; Discrete Fourier Transform; Discrete Cosine
Transform; Walsh Transform; Hadamard Transform;

FIRST INTERNAL EXAM

Image Enhancement in spatial domain

Basic Gray Level Transformation functions — Image
Negatives; Log  Transformations; Power-Law
Transformations.

Piecewise-Linear Transformation Functions:
Contrast Stretching; Gray Level Slicing; Bit Plane
Slicing; Histogram Processing—Equalization;
Specification.

Basics of Spatial Flltcnng Smoothmg Smoolhmg

Imagc Enhancement in quuency Domain

Basics of Filtering in Frequency Domain, Filters =
Smoothing Frequency Domain Filters : Ideal Low Pass
Filter; Gaussian Low Pass Filter; Butterworth Low
Pass Filter; Sharpening Frequency Domain Filters:
Ideal High Pass lnlter (Jdu:s.smn High Pass Filter;

Butte Tino

SECOND INTERNAL EXAM

Image Segmentation: anel-Baxed Appromh- Multi-
Level Thresholding, Local Thresholding, Threshold
Detection Method; Region- Apptoach Region
Growing Based Segmentation, Region Splitting,
Regnon Mergmg Split and Merge Edge Detection -

D P | - L

MnrphologlcalOpcratlons

Basics of Set Theory; Dilation and Erosion - Dilation,
Erosion; Structuring Element; Opening and Closing;
Hit or Miss Transformation.

Representation and Description Representation -
Boundary, Chain codes, Polygonal approximation
approaches, Boundary segments,

END SEMESTER EXAM

Question Paper Pattern (End semester exam)

I. There will be FOUR parts in the question paper — A, B, C, D
2. PartA
a. Total marks : 40
b. TEN questions, each have 4 marks, covering all the SIX modules (THREE
questions from modules I & I1; THREE questions from modules 11T & 1V;
FOUR questions from modules V & VI).
All the TEN questions have to be answered.
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. Total marks : 18
THREE questions, each having 9 marks. One question is from module I;
one question is from module II: one question uniformly covers modules I &
IL.

. Any TWO questions have to be answered.

. Each question can have maximum THREE subparts.

. Total marks : 18
. THREE questions, each having 9 marks. One question is from module II1;
one question is from module 1V; one question uniformly covers modules 111
&1V,
s, Any TWO questions have (o be answered,
. Each question can have maximum THREE subparts.

. Total marks : 24
. THREE questions, each having 12 marks. One question is from module V;
one question is from module VI; one question uniformly covers modules V
& VI
> Any TWO questions have to be answered.
d. Each question can have maximum THREE subparts.
There will be AT LEAST 609 analytical/numerical questions in all possible
combinations of question choices.
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QUESTION BANK

MODULE I

QUESTIONS PAGE NO:

Define image processing

Explain fundamental steps in image processing
Explain Components of image processing system
Explain how images are represented

Differentiate spatial domain and frequency domain
representations of image

[llustrate the relationships among pixels with
examples

Explain distance measures

MODULE Il

Explain the concept of image transforms
Explain 2D linear transform

Analyze the applications of image transforms
Explain the concept of unitary matrix
Differentiate unitary and orthogonal matrix
Explain properties of 2D transforms

MODULE 111

Explain gray level transformations

Differentiate Log transforms and power-law
transforms

Explain contrast stretching in detail

Explain gray level slicing

Differentiate gray level slicing and bit plane slicing
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Explain Gray level transformations in detail
Explain the process of histogram equalization

Explain the process of histogram matching
Explain image subtraction
Explain image averaging

Explain how smoothing in spatial filters are done

Explain various masks used in image processing

MODULE IV

Explain the transfer function of Butterworth low pass
filter

Analyze the disadvantages of ideal low pass filter

List out the steps involved in frequency domain
filtering

Explain how edge detection is done

With appropriate figure explain the steps involved in
frequency domain filtering

Explain ideal low pass filter ,Analyze the advantages
and disadvantages of ideal low pass filter

Explain un sharp masking and high boost filtering

Differentiate the following image enhancement
techniques in frequency domain

)] Gaussian high pass filter

i) Butterworth high pass filter
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MODULE V

Differentiate various types of image segmentations

Explain and illustrate How is a line detected? Give the
mask to detect horizontal, vertical, + 450 slope and -450
slope line

Write short notes on region splitting

Differentiate various thresholding methods
Explain region merging

Explain region based segmentation in detail

Differentiate any three similarity based segmentations

Differentiate short note on Prewitt, Robert’s and Sobel
edge detectors

Explain different edge detection methods
MODULE VI
Differentiate two image representation schemes

Briefly explain hit or miss transformation
Differentiate various threshold based segmentation

Explain boundary based representations

Explain and illustrate Hit or miss transform morphological
algorithm with an example

Differentiate dilation and erosion with an example

Morphological operations are important in image
processing, justify your answers
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APPENDIX 1

CONTENT BEYOND THE SYLLABUS

TOPIC

PAGE NO:

Convolution Neural Networks (CNN)

126

CNN Architecture

127
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MODULE 1

Introduction to Image processing: Fundamental steps in image processing; Components of image
processing system; Pixels; coordinate conventions; Imaging Geometry; Spatial Domain; Frequency
Domain; sampling and quantization; Basic relationship between pixels; Applications of Image
Processing.

What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane)
coordinates, and the amplitude of f at any pair of coordinates (X, y) is called the intensity or gray level
of the image at that point. When x, y, and the amplitude values of f are all finite, discrete quantities, we
call the image a digital image. The field of digital image processing refers to processing digital images
by means of a digital computer. Note that a digital image is composed of a finite number of elements,
each of which has a particular location and value. These elements are referred to as picture elements,
image elements, pels, and pixels. Pixel is the term most widely used to denote the basic elements of a

digital image.

1.2 Fundamental Steps in Digital Image Processing

Outputs of these processes generally are images
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Image acquisition is the first process, Before any video or image processing can commence an image
must be captured by a camera and converted into a manageable entity. This is the process known as
image acquisition.

Image enhancement is among the simplest and most appealing areas of digital image processing.
Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to
highlight certain features of interest in an image. Example : enhancement, when we increase the
contrast of an image “it looks better.” It is important to keep in mind that enhancement is a very

subjective area of image processing

Image restoration Unlike enhancement, which is subjective, image restoration is objective, in the
sense that restoration techniques tend to be based on mathematical or probabilistic models of image
degradation. Enhancement, on the other hand, is based on human subjective preferences regarding what

constitutes a “good” enhancement result.

Color image processing is an area that gained importance because of the significant increase in the use
of digital images over the Internet. Color is used as the basis for extracting features of interest in an
image.

Wavelets are the foundation for representing images in various degrees of resolution. In particular, this
material is used for image data compression and for pyramidal representation, in which images are
subdivided successively into smaller regions.

Compression, as the name implies, deals with techniques for reducing the storage required to save an
image, or the bandwidth required to transmit it. Although storage technology has improved
significantly over the past decade, the same cannot be said for transmission capacity. This is true
particularly in uses of the Internet, which are characterized by significant pictorial content. Image
compression is familiar (perhaps inadvertently) to most users of computers in the form of image file
extensions, such as the jpg file extension used in the JPEG(Joint Photographic Experts Group) image
compression standard.

Morphological processing deals with tools for extracting image components that are useful in the
representation and description of shape.

Segmentation procedures partition an image into its constituent parts or objects. In general,



autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged
segmentation procedure brings the process a long way toward successful solution of imaging problems
that require objects to be identified individually. On the other hand, weak or erratic segmentation
algorithms almost always guarantee eventual failure.

Representation and description almost always follow the output of a segmentation stage, which
usually is raw pixel data, constituting either the boundary of a region (i.e., the set of pixels separating
one image region from another) or all the points in the region itself. In either case, converting the data
to a form suitable for computer processing is necessary. The first decision that must be made is whether
the data should be represented as a boundary or as a complete region. Boundary representation is
appropriate when the focus is on external shape characteristics, such as corners and inflections.
Regional representation is appropriate when the focus is on internal properties, such as texture or
skeletal shape. In some applications, these representations complement each other. Choosing a
representation is only part of the solution for transforming raw data into a form suitable for subsequent
computer processing. A method must also be specified for describing the data so that features of
interest are highlighted. Description, also called feature selection, deals with extracting attributes that
result in some quantitative information of interest or are basic for differentiating one class of objects

from another.

Recognition is the process that assigns a label (e.g., “vehicle”) to an object based on its descriptors.

Knowledge base : Knowledge about a problem domain is coded into an image processing system in the
form of a knowledge database. This knowledge may be as simple as detailing regions of an image
where the information of interest is known to be located, thus limiting the search that has to be
conducted in seeking that information. The knowledge base also can be quite complex, such as an
interrelated list of all major possible defects in a materials inspection problem or an image database
containing high-resolution satellite images of a region in connection with change-detection
applications. In addition to guiding the operation of each processing module, the knowledge base also
controls the interaction between modules. This distinction is made in Fig. by the use of double headed
arrows between the processing modules and the knowledge base, as opposed to single-headed arrows

linking the processing modules.



Components of an Image Processing System

The function of each component is discussed in the following paragraphs, starting with image sensing.
With reference to sensing, two elements are required to acquire digital images. The first is a physical
device that is sensitive to the energy radiated by the object we wish to image. The second, called a
digitizer, is a device for converting the output of the physical sensing device into digital form. For
instance, in a digital video camera, the sensors produce an electrical output proportional to light
intensity. The digitizer converts these outputs to digital data.

Specialized image processing hardware usually consists of the digitizer just mentioned, plus hardware
that performs other primitive operations, such as an arithmetic logic unit (ALU), which performs
arithmetic and logical operations in parallel on entire images. One example of how an ALU is used is in
averaging images as quickly as they are digitized, for the purpose of noise reduction. This type of

hardware sometimes is called a front-end subsystem, and its most

Image displays > Computer % Mass storage

Specialized
Hardcopy Image processing
hardware

Image processing
software

Image sensors

Problem
domain

distinguishing characteristic is speed. In other words, this unit performs functions that require fast data
throughputs (e.g., digitizing and averaging video images at 30 frames_s) that the typical main computer

cannot handle.



The computer in an image processing system is a general-purpose computer and can range from a PC
to a supercomputer. In dedicated applications, sometimes specially designed computers are used to
achieve a required level of performance, but our interest here is on general-purpose image processing
systems. In these systems, almost any well-equipped PC-type machine is suitable for offline image

processing tasks.

Software for image processing consists of specialized modules that perform specific tasks. A well-
designed package also includes the capability for the user to write code that, as a minimum, utilizes the
specialized modules. More sophisticated software packages allow the integration of those modules and

general- purpose software commands from at least one computer language.

Mass storage capability is a must in image processing applications.An image of size 1024*1024 pixels,
in which the intensity of each pixel is an 8-bit quantity, requires one megabyte of storage space if the
image is not compressed. When dealing with thousands, or even millions, of images, providing
adequate storage in an image processing system can be a challenge. Digital storage for image
processing applications falls into three principal categories: (1) short term storage for use during
processing, (2) on-line storage for relatively fast recall, and (3) archival storage, characterized by
infrequent access. Storage is measured in bytes (eight bits), Kbytes (one thousand bytes), Mbytes (one

million bytes), Gbytes (meaning giga, or one billion, bytes), and T bytes (meaning tera, or one trillion,

bytes).

Image displays in use today are mainly color (preferably flat screen) TV monitors. Monitors are driven
by the outputs of image and graphics display cards that are an integral part of the computer system.
Seldom are there requirements for image display applications that cannot be met by display cards
available commercially as part of the computer system. In some cases, it is necessary to have stereo
displays, and these are implemented in the form of headgear containing two small displays embedded

in goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cameras, heat-sensitive devices,
inkjet units, and digital units, such as optical and CD-ROM disks. Film provides the highest possible
resolution, but paper is the obvious medium of choice for written material. For presentations, images

are displayed on film transparencies or in a digital medium if image projection equipment is used. The



latter approach is gaining acceptance as the standard for image presentations.

Networking is almost a default function in any computer system in use today. Because of the large
amount of data inherent in image processing applications, the key consideration in image transmission

is bandwidth. This is improving quickly as a result of optical fiber and other broadband technologies.

Image Sampling and Quantization
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To create a digital image, we need to convert the continuous sensed data into digital form. This
involves two processes: sampling and quantization. A continuous image, f(x, y), that we want to
convert to digital form. An image may be continuous with respect to the x- and y-coordinates, and also
in amplitude. To convert it to digital form, we have to sample the function in both coordinates and in
amplitude. Digitizing the coordinate values is called sampling. Digitizing the amplitude values is called

quantization.
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The one-dimensional function shown in Fig is a plot of amplitude (gray level) values of the continuous
image along the line segment AB. The random variations are due to image noise. To sample this
function, we take equally spaced samples along line AB, The location of each sample is given by a
vertical tick mark in the bottom part of the figure. The samples are shown as small white squares
superimposed on the function. The set of these discrete locations gives the sampled function. However,
the values of the samples still span (vertically) a continuous range of gray-level values. In order to form
a digital function, the gray-level values also must be converted (quantized) into discrete quantities. The
right side gray-level scale divided into eight discrete levels, ranging from black to white. The vertical
tick marks indicate the specific value assigned to each of the eight gray levels. The continuous gray
levels are quantized simply by assigning one of the eight discrete gray levels to each sample. The
assignment is made depending on the vertical proximity of a sample to a vertical tick mark. The digital

samples resulting from both sampling and quantization.

Co-ordinate conventions and Representation of Digital Images:

The result of sampling and quantization is matrix of real numbers. Assume that an image f(x,y) is
sampled so that the resulting digital image has M rows and N Columns. The values of the coordinates
(x,y) now become discrete quantities thus the value of the coordinates at orgin become (x,y) =(0,0)
The next Coordinates value along the first signify the image along the first row. It does not mean that
these are the actual values of physical coordinates when the image was sampled. Thus the right side of

the matrix represents a digital element, pixel or pel. Co-ordinate convention used to represent digital



image is shown in following figure.
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Above co-ordiante conventions help us to represent an MXN image in the following form.
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Gray level values

Due to processing storage and hardware consideration, the number gray levels typically is an integer
power of 2.

L=2*

Then, the number, b, of bites required to store a digital image is B=M *N* k

When M=N, the equation become b=NA2 *k

When an image can have 2k gray levels, it is referred to as “k- bit”. An image with 256 possible gray

levels is called an “8- bit image” (256=2°).

Spatial domain

The term spatial domain refers to the image plane itself and approaches in this categories are based on

direct manipulation of pixel in an image. Spatial domain process are denoted by the expression

g(oy)=TIf(x,y)]

Where f(x,y)- input image, T- operator on f, defined over some neighborhood of f(x,y) and g(x,y)-



processed image The neighborhood of a point (X,y) can be explain by using as square or rectangular
sub image area centered at (x,y). The center of sub image is moved from pixel to pixel starting at the
top left corner. The operator T is applied to each location (x,y) to find the output g at that location . The

process utilizes only the pixel in the area of the image spanned by the neighborhood.

Origia
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Image f{x, ¥)

Frequency domain

An image is a signal that's perceived in 2 spatial dimensions: height and width. When
analyzing images(or signals), it's often helpful to represent it in a form other than spatial
extent ( or the time domain). If you perform a fourier transform on the image (signal),
you can represent the signal another way, in a frequency domain, where the signal has
been decomposed into a series of constituent trigonometric functions. This
representation allows you to see, measure, and modify the signal in a different way than
is possible in the spatial domain. The inverse Fourier transform converts the frequency-
domain function back to the spatial domain. In this domain, pixel location is represented

by its x- and y-frequencies and its value is represented by an amplitude.

From the context of image processing, it is to study the change in pixel values in the



image. These change in frequency is a characteristic of change in geometry of the
image(spatial distribution). Edges reflects high frequency components, smooth regions
have low frequency components.

Difference between spatial domain and frequency domain

Spatial domain :

- Deal with images as it is.

- The value of the pixels of the image change with respect to scene.
Frequency domain :

- Deal with the rate at which the pixel values are changing in spatial domain
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2.5 Some Basic Relationships between Pixels

Here, we consider some important relationships eetwpixels in
a digital image.

Neighbours of a Pixel

A pixel p at coordinates$r,y) has four horizontal and vertical
neighbours:
(z +1y), (z—-1y), (zy+1), (zy—1).

This set of pixels is called theneighbuor®f p, and denoted by
Ny(p).

The four diagonal neighbours pfare

(z+Ly+1), c+Ly=1, (z=1Ly+1), (x—Ly—1),
and are denoted by, (p) .
Adjacency, Connectivity, Regions, and Boundaries
Let V be the set of intensity values used to defidgcencylIn a
binary image,V = {1} if we are referring t@djacencyof pixels
with valuel.
In a gray-scale image, s&t typically contains more elements.
For example, with a range of possible intensityigald to 255,

setV could be any subset of the3& values.

Consider three types afljacency

(a) 4-adjacencyTwo pixelsp andq with values fromV are
4-adjacencyf q is in the setV.(p) .
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(b) 8-adjacencyTwo pixelsp andq with values fromV' are
8-adjacencyf q is in the setVs(p) .
(c) mradjacencymixed adjacencgy Two pixelsp andg with
values fromV arem -adjacencyf
() qisintheNs(p), or
(i) qisintheNp(p)and the setVi(p) N Ni(q) has no
pixels whose values are froin.

Mixed adjacencys a modified oB-adjacency

1 1--1 1--1
1 1%
1 1 1
1 0 4 n
1 VR, W1 0 1
T 1 1 1
R 6 IN1: 140 1
1 1 1R, L 1T L
1 1 1
abc
al @] i

FIGURE 2.25 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency is
shown by dashed lines; note the ambiguity). (¢) m-adjacency. (d) Two regions that are
adjacent if 8-adjecency is used. (e) The circled point is part of the boundary of the
1-valued pixels only if 8-adjacency between the region and background is used. (f) The
inner boundary of the 1-valued region does not form a closed path, but its outer
boundary does.

For example, consider the arrangement showngare 2.25 (a)

forV ={1}.

The three pixels at the top Bigure 2.25 (bshow ambiguou8-
adjacencywhich is removed by using-adjacencyas shown in
Figure 2.25 (c)
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A pathfrom pixelp with coordinateg,) to pixelq with
coordinateds,?) is a sequence dfistinct pixelswith coordinates

(x()ayO)? (xlayl)a ) (xmyn),

where (79, %0) = (z,9), (2,,¥,) = (s,t), and pixels(z;;¥;) and
(zi—1,9;-1) areadjacenfor 1 < i < n. n is the length of thpath
If (20,%0) = (,,%) , the path is alosedpath.

We can definél-, 8-, or mpaths depending on the typeaafjacency
The path shown ifigure 2.25 (bpetween the top right and bottom
right points are3-paths, and the path Figure 2.25 (c)s anm-path.

Let S represent a subset of pixels in an image. Twolpjxandq
are said to beonnectedn S if there exists a path between them
consisting entirely of pixels 8. If it only has one connected
component, set is called a&connected set

Let ® be a subset of pixels in‘an image. We calaregionof the
image if i is aconnected set

Two regions &2, and £, are said to badjacenif their union forms
aconnected seRegionsthat are noaidjacentare said to bdisjoint

The two regions (o1s) inFigure 2.25 (dareadjacenonly if 8-
adjacencys used.

Suppose that an image contaifiglisjoint regions i, & = 1,2,.... K |
and none of which touches the image border.R.etlenote theinion
of all the K regions and let(2,)° denote its complement. We call all

the points inR, theforeground and all the points iff2,)° the
backgroundf the image.

13


Free Hand


Theboundary(also called théorderor contou) of aregionZ is the
set of points that ar@djacento points in theomplement oft .

Again, we must specify the connectivity being usedefine
adjacencyFor example, the point circled ingure 2.25 (e)s not a
member of théorderof thel-valued regionf 4-connectivityis
used between thegionand itsbackground

As a rule adjacencybetween points in gegionand itsbackground
Is defined in terms d-adjacencyto handle situations like above.

The preceding definition is referred to as itheer borderof the
region to distinguish it from itsuter borderwhich is the
correspondingporderin thebackground

This issue is important in the developmenbofder-following
algorithms. Such algorithms usually are formulatetbliow the
outer boundaryn order to guarantee that the result will form a
closed path.

For example, theaner bordeiof thel-valued regionn Figure 2.25
(f) is theregionitself.

If 2 happens to be an entire image, then its boundatgfined as
the set of pixels in the first and last rows antliems of the image.
This extra definition is required because an imaggno neighbours
beyond its border.

14


Free Hand


Distance Measures

For pixelsp, ¢, and z , with coordinatesz,y), (s,t), and(v,w),
D is adistance functiomor metricif

(@ D(p,q) >0 (D(p,g) =0 iff p=4q)
(b) D(p,q) = D(¢,p), and

(c) D(p,2) < D(p,q) + D(g,2) .

The Euclidean distancbetweenp and ¢ iIs defined as

D.(p,q) = (& — s)* + (y — t)* |2 (2.5-1)

The D, distancg(called thecity-block distanckbetweenp andq is
defined as
Dy(p,q) =z — s |y —¢]. (2.5-2)

Example the pixels withD, distance< 2 from (z,y) form the
following contours of constant distance:

[\
N = DD

2

1 2

0 1 2
1 2

2

The pixels withD, = 1 are the4-neighbuorsf (z,y).

15


Free Hand


The Dg distanceg(called thechessboard distancbetweenp and ¢

Is defined as

Dg(p,q) = max(|z —s ||y —t]). (2.5-3)

Example the pixels withDs distance< 2 from (z,y) form the
following contours of constant distance:

2
1
0
1
2

[N NS R \C R NORE \V)]
[N T e S == S O N

2 2
1 2
1 2
1 2
2 2

The pixels withDs = 1 are theB-neighbuorof (z.y).
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Digital Image Processing UNIT 11

Image enhancement in spatial domain

Basic Gray Level Transformations:

The study of image enhancement techniques is done by discussing gray-level transformation
functions. These are among the simplest of all image enhancement techniques. The values of
pixels, before and after processing, will be denoted by r and s, respectively. As indicated in the
previous section, these values are related by an expression of the form s=T(r), where T is a
transformation that maps a pixel value r into a pixel value s. Since we are dealing with digital
quantities, values of the transformation function typically are stored in a one-dimensional array
and the mappings from r to s are implemented via table lookups. For an 8-bit environment, a
lookup table containing the values of T will have 256 entries. As an introduction to gray-level
transformations, consider Fig. 1.1, which shows three basic types of functions used frequently for
image enhancement: linear (negative and identity transformations), logarithmic (log and inverse-
log transformations), and power-law (nth power and nth root transformations).The identity
function is the trivial case in which output intensities are identical to input intensities. It is
included in the graph only for completeness.

Image Negatives:

The negative of an image with gray levels in the range [0, L-1] is obtained by using the negative
transformation shown in Fig.1.1, which is given by the expression

s=L-1-r.

Reversing the intensity levels of an image in this manner produces the equivalent of a
photographic negative. This type of processing is particularly suited for enhancing white or gray
detail embedded in dark regions of an image, especially when the black areas are dominant in size.
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Log Transformations:

The general form of the log transformation shown in Fig.1.1 is
s =clog(l +r)

where c is a constant, and it is assumed that r > 0.The shape of the log curve in Fig. 1.1 shows that
this transformation maps a narrow range of low gray-level values in the input image into a wider
range of output levels.The opposite is true of higher values of input levels.We would use a
transformation of this type to expand the values of dark pixels in an image while compressing the
higher-level values.The opposite is true of the inverse log transformation.

Any curve having the general shape of the log functions shown in Fig. 1.1 would accomplish this
spreading/compressing of gray levels in an image. In fact, the power-law transformations
discussed in the next section are much more versatile for this purpose than the log transformation.
However, the log function has the important characteristic that it compresses the dynamic range of
images with large variations in pixel values. A classic illustration of an application in which pixel
values have a large dynamic range is the Fourier spectrum. At the moment,we are concerned only
with the image characteristics of spectra. It is not unusual to encounter spectrum values that range
from O to or higher.While processing numbers such as these presents no problems for a computer,
image display systems generally will not be able to reproduce faithfully such a wide range of
intensity values. The net effect is that a significant degree of detail will be lost in the display of a
typical Fourier spectrum.

Power-Law Transformations:
Power-law transformations have the basic form
s =cr’
where ¢ and g are positive constants. Sometimes Eq. is writtenas § = c(r + g}’

to account for an offset (that Is, @ measurable output when the input is zero).However, offsets
typically are an issue of display calibration and as a result they are normally ignored in Eq. Plots
of s versus r for various values of g are shown in Fig. 1.2. As in the case of the log transformation,
power-law curves with fractional values of g map a narrow range of dark input values into a wider
range of output values,with the opposite being true for high-er values of input levels. Unlike the
log function, however, we notice here a family of possible transformation curves obtained simply
by varying y. As expected, we see in Fig.1.2 that curves generated with values of g>1 have exactly
the opposite effect as those generated with values of g<1. Finally, we note that Eg. reduces to the
identity transformation when ¢ =y = 1. A variety of devices used for image capture, printing, and
display respond according to a power law.By convention, the exponent in the power-law equation
is referred to as gamma. The proces used to correct this power-law response phenomena is called
gamma correction. For example, cathode ray tube (CRT) devices have an intensity-to-voltage
response that is a power function, with exponents varying from approximately 1.8 to 2.5.With
reference to the curve for g=2.5 in Fig.1.2, we see that such display systems would tend to
produce images that are darker than intended.

36



T
» = 0.04
» = 0.10
37 /4 +» = 0.20

— I
=
=
=
2-
= 2
= -
=
=

_jap

o 1 1 1
5] Zja ;2 37 /4 Z — 1

Input grayv level, »

Fig.1.2 Plots of the equation s = ¢r” for various values of ¥ (c=1 in all cases).

Piecewise-Linear Transformation Functions:

The principal advantage of piecewise linear functions over the types of functions we have
discussed above is that the form of piecewise functions can be arbitrarily complex. In fact, as we
will see shortly, a practical implementation of some important transformations can be formulated
only as piecewise functions. The principal disadvantage of piecewise functions is that their
specification requires considerably more user input.

Contrast stretching:

One of the simplest piecewise linear functions is a contrast-stretching transformation. Low-
contrast images can result from poor illumination, lack of dynamic range in the imaging sensor, or
even wrong setting of a lens aperture during image acquisition.The idea behind contrast stretching
is to increase the dynamic range of the gray levels in the image being processed.

Figure 1.3 (a) shows a typical transformation used for contrast stretching.

The locations of points (r1 , s1) and (r2 , s2) control the shape of the transformation
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Fig.1.3 Contrast Stretching (a) Form of Transformation function (b) A low-contrast image
(c) Result of contrast stretching (d) Result of thresholding.

function. If r1=s1 and r2=s2, the transformation is a linear function that produces no changes in
gray levels. If r1=r2,51=0 and s2=L-1, the transformation becomes a thresholding function that

creates a binary image, as illustrated in Fig. 1.3 (b). Intermediate values of (r1 , s1) and (r2 , s2)
produce various degrees of spread in the gray levels of the output image, thus affecting its
contrast. In general, r1 < r2 and sl < s2 is assumed so that the function is single valued and
monotonically increasing.This condition preserves the order of gray levels, thus preventing the
creation of intensity artifacts in the processed image.

Figure 1.3 (b) shows an 8-bit image with low contrast. Fig. 1.3(c) shows the result of contrast

stretching, obtained by setting (r1, S1) = (fmin, 0) and (r2 , s2) = (rmax , L-1) where rmin and rmax
denote the minimum and maximum gray levels in the image, respectively.Thus, the transformation
function stretched the levels linearly from their original range to the full range [0, L-1]. Finally,
Fig. 1.3 (d) shows the result of using the thresholding function defined previously,with rl =r2 =
m, the mean gray level in the image.The original image on which these results are based is a
scanning electron microscope image of pollen,magnified approximately 700 times.

Gray-level slicing:

Highlighting a specific range of gray levels in an image often is desired. Applications include
enhancing features such as masses of water in satellite imagery and enhancing flaws in X-ray
images.There are several ways of doing level slicing, but most of them are variations of two basic
themes.One approach is to display a high value for all gray levels in the range of interest and a low
value for all other gray levels.This transformation, shown in Fig. 1.4 (a), produces a binary
image.The second approach, based on the transformation shown in Fig. 1.4 (b), brightens the
desired range of gray levels but preserves the background and gray-level tonalities in the image.
Figure 1.4(c) shows a gray-scale image, and Fig. 1.4 (d) shows the result of using the
transformation in Fig. 1.4 (a).Variations of the two transformations shown in Fig. 1.4 are easy to
formulate.

R e R B
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Fig.1.4 (a) This transformation highlights range [A, B] of gray levels and reduce all others to
a constant level (b) This transformation highlights range [A, B] but preserves all other levels
(c) An image (d) Result of using the transformation in (a).

Bit-plane slicing:

Instead of highlighting gray-level ranges, highlighting the contributionmade to total image
appearance by specific bits might be desired. Suppose that each pixel in an image is represented
by 8 bits. Imagine that the image is composed of eight 1-bit planes, ranging from bit-plane 0 for
the least significant bit to bit plane 7 for the most significant bit. In terms of 8-bit bytes, plane 0

contains all the lowest order bits in the bytes comprising the pixels in the image and plane 7
contains all the high-order bits.Figure 1.5 illustrates these ideas, and Fig. 1.7 shows the various bit
planes for the image shown in Fig.1.6 . Note that the higher-order bits (especially the top four)
contain themajority of the visually significant data.The other bit planes contribute tomore subtle
details in the image. Separating a digital image into its bit planes is useful for analyzing the
relative importance played by each bit of the image, a process that aids in determining the
adequacy of the number of bits used to quantize each pixel.

One 8-bit byte 7 Bit-plane 7

(mostsignificant)

\

e ] ] — — — —

Bit-plane 0

/ (least significant)

\

Fig.1.5 Bit-plane representation of an 8-bit image.

In terms of bit-plane extraction for an 8-bit image, it is not difficult to show that the (binary)
image for bit-plane 7 can be obtained by processing the input image with a thresholding gray-level
transformation function that (1) maps all levels in the image between 0 and 127 to one level (for
example, 0); and (2) maps all levels between 129 and 255 to another (for example, 255).

Fig.1.6 An 8-bit fré&al image
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Fig.1.7 The eight bit planes of the image in Fig.1.6. The number at the bottom, right of each
image identifies the bit plane.

objective of image enhancement. Define spatial domain.

The term spatial domain refers to the aggregate of pixels composing an image. Spatial domain
methods are procedures that operate directly on these pixels. Spatial domain processes will be
denoted by the expression

g y) = Bf(x )]

where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator on f, defined
over some neighborhood of (X, y). In addition, T can operate on a set of input images, such as
performing the pixel-by-pixel sum of K images for noise reduction.

The principal approach in defining a neighborhood about a point (X, y) is to use a square or
rectangular subimage area centered at (X, y), as Fig.2.1 shows. The center of the subimage is
moved from pixel to pixel starting, say, at the top left corner. The operator T is applied at each
location (X, y) to yield the output, g, at that location.The process utilizes only the pixels in the area
of the image spanned by the neighborhood.

Origin —

Image f{x, y)
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Fig.2.1 A 3*3 neighborhood about a point (x, y) in an image.

Although other neighborhood shapes, such as approximations to a circle, sometimes are used,
square and rectangular arrays are by far the most predominant because of their ease of
implementation. The simplest form of T is when the neighborhood is of size 1*1 (that is, a single
pixel). In this case, g depends only on the value of f at (x, y), and T becomes a gray-level (also
called an intensity or mapping) transformation function of the form

s=T(r)

where, for simplicity in notation, r and s are variables denoting, respectively, the gray level of f(x,
y) and g(Xx, y) at any point (x, y). For example, if T(r) has the form shown in Fig. 2.2(a), the effect
of this transformation would be to produce an image of higher contrast than the original by
darkening the levels below m and brightening the levels above m in the original image. In this
technique, known as contrast stretching, the values of r below m are compressed by the
transformation function into a narrow range of s, toward black.The opposite effect takes place for
values of r above m. In the limiting case shown in Fig. 2.2(b), T(r) produces a two-level (binary)
image. A mapping of this form is called a thresholding function. Some fairly simple, yet powerful,
processing approaches can be formulated with gray-level transformations. Because enhancement
at any point in an image depends only on the gray level at that point, techniques in this category
often are referred to as point processing.
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Fig.2.2 Graylevel transformation functions for contrast enhancement.

Larger neighborhoods allow considerably more flexibility. The general approach is to use a
function of the values of f in a predefined neighborhood of (X, y) to determine the value of g at (X,
y).One of the principal approaches in this formulation is based on the use of so-called masks

(also referred to as filters, kernels, templates, or windows). Basically, a mask is a small (say, 3*3)
2-D array, such as the one shown in Fig. 2.1, in which the values of the mask coefficients
determine the nature of the process, such as image sharpening.

Histogram of a digital image.
Histogram Processing:

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete function h(rk)

= (nk), where rk is the kth gray level and nk is the number of pixels in the image having gray level

rg. It is common practice to normalize a histoﬁpam by dividing each of its values by the total
number of pixels in the image, denoted by n. Thus, a normalized histogram is given by



for k=0,1,...... ., L-1. Loosely speaking, p(rk) gives an estimate of the probability of occurrence
of gray level rk. Note that the sum of all components of a normalized histogram is equal to 1.

Histograms are the basis for numerous spatial domain processing techniques.Histogram
manipulation can be used effectively for image enhancement. Histograms are simple to calculate
in software and also lend themselves to economic hardware implementations, thus making them a
popular tool for real-time image processing.

As an introduction to the role of histogram processing in image enhancement, consider Fig. 3,
which is the pollen image shown in four basic gray-level characteristics: dark, light, low contrast,
and high contrast.The right side of the figure shows the histograms corresponding to these images.

The horizontal axis of each histogram plot corresponds to gray level values, r.

The vertical axis corresponds to values of h(rk) = nk or p(rk) = nk/n if the values are
normalized.Thus, as indicated previously, these histogram plots are simply plots of h(rk) = nk
versus rg or p(rk) = n k/n versus r.

Dark imag=

Bright imags

Lowe.contrast image

High-conirast imags

Fig.3 Four basic image types: dark, light, low contrast, high contrast, and their
corresponding histograms.

We note in the dark image that the components of the histogram are concentrated on the low
(dark) side of the gray scale. Similarly, the components of the histogram of the bright image are
biased toward the high side of the gray scale.An image with low contrast has a histogram that will
be narrow and will be centered toward the middle of the gray scale. For a monochrome image this
implies a dull,washed-out gray look. Finally,we see that the components of the histogram in the
high-contrast image cover a broad range of the gray scale and, further, that the distribution of
pixels is not too far from uniform,with very few vertical lines being much higher than the others.
Intuitively, it is reasonable to conclude that an image whose pixels tend to occupy the entire range
of possible gray levels and, in addition, tend to be distributed uniformly,will have an appearance
of high contrast and will exhibit a large variety of gray tones. The net effect will be an image that
shows a great deal of gray-level detail and has hgh dynamic



range. It will be shown shortly that it is possible to develop a transformation function that can
automatically achieve this effect, based only on information available in the histogram of the input
image.

Histogram equalization.
Histogram Equalization:

Consider for a moment continuous functions, and let the variable r represent the gray levels of the
image to be enhanced. We assume that r has been normalized to the interval [0, 1], with r=0
representing black and r=1 representing white. Later, we consider a discrete formulation and allow
pixel values to be in the interval [0, L-1]. For any r satisfying the aforementioned conditions, we
focus attention on transformations of the form

that produce a level s for every pixel value r in the original image. For reasons that will become
obvious shortly, we assume that the transformation function T(r) satisfies the following
conditions:

(a) T(r) is single-valued and monotonically increasing in the interval 0 <r < 1; and
(b)0O<T(r)<1for0<r<1.

The requirement in (a) that T(r) be single valued is needed to guarantee that the inverse
transformation will exist, and the monotonicity condition preserves the increasing order from
black to white in the output image.A transformation function that is not monotonically increasing
could result in at least a section of the intensity range being inverted, thus producing some
inverted gray levels in the output image. Finally, condition (b) guarantees that the output gray
levels will be in the same range as the iInput levels. Figure 4.1 gives an example of a
transformation function that satisfies these two conditions.The inverse transformation from s back
to r is denoted

r=T7(s) 0=s=1.

It can be shown by example that even if T(r) satisfies conditions (a) and (b), it is possible that the

corresponding inverse T (s) may fail to be single valued.
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Fig.4.1 A gray-level transformation function that is both single valued and monotonically
increasing. 43



The gray levels in an image may be viewed as random variables in the interval [0, 1].One of the
most fundamental descriptors of a random variable is its probability density function (PDF).Let

pr(r) and ps(s) denote the probability density functions of random variables r and s,
respectively,where the subscripts on p are used to denote that pr and ps are different functions.A
basic result from an elementary probability theory is that, if pr(r) and T(r) are known and T (s)

satisfies condition (a), then the probability density function ps(s) of the transformed variable s can
be obtained using a rather simple formula:

dr

ps(s) = p,(r)
; ds

Thus, the probability density function of the transformed variable, s, is determined by the gray-
level PDF of the input image and by the chosen transformation function. A transformation
function of particular importance in image processing has the form

s=T(r) = / p(w) dw
JA

where w is a dummy variable of integration.The right side of Eg. above is recognized as the
cumulative distribution function (CDF) of random variable r. Since probability density functions
are always positive, and recalling that the integral of a function is the area under the function, it
follows that this transformation function is single valued and monotonically increasing, and,
therefore, satisfies condition (a). Similarly, the .integral of a probability density function for
variables in the range [0, 1] also is in the range {0, 1], so condition (b) is satisfied as well.

Given transformation function T(r),we find ps(s) by applying Eq. We know from basic calculus

(Leibniz’s rule) that the derivative of a definite integral with respect to its upper limit is simply the
integrand evaluated at that limit. In other words,

ds., dI(r)
dr  wdr
i ]
= ;;—; {/1 p(w) duf‘
= p(r).

Substituting this result for dr/ds, and keeping in mind that all probability values are positive,
yields
dr

n(s) = p.(r)
Ps\>) PAT. ds

|
p(r)

| 0=s=1.

= p,(r)

/

Because ps(s) is a probability density function, it follows that it must be zero outside the interval
[0, 1] in this case because its integral over all values of s must equal 1.We recognize the form of
ps(s) as a uniform probability density function. Simply stated, we have demonstrated that
performing the transformation function yields a random variable s characterized by a uniform
probability density function. It is important to note from Eq. discussed above that T(r) depends on
pr(r), but, as indicated by Eq. after it, the resulting ps(s) always is uniform, independent of the
form of pr(r). For discrete values we deal with probabilities and summations instead of probability

density functions and integrals. The probability’ of occurrence of gray level r in an image is
approximated by
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where, as noted at the beginning of this section, n is the total number of pixels in the image, nk is

the number of pixels that have gray level rk, and L is the total number of possible gray levels in
the image.The discrete version of the transformation function given in Eq. is

se = T(r) = X p,(r)

i=()

J

kK R,
> — k=012 L= 1

,v' =( n

Thus, a processed (output) image is obtained by mapping each pixel with level rk in the input
image into a corresponding pixel with level sk in the output image. As indicated earlier, a plot of

pr (rk) versus rk is called a histogram. The transformation (mapping) is called histogram
equalization or histogram linearization. It is not difficult to show that the transformation in Eq.
satisfies conditions (a) and (b) stated previously. Unlike its continuos counterpart, it cannot be
proved in general that this discrete transformation will produce the discrete equivalent of a
uniform probability density function, which would be a uniform histogram.

abe

Fig.4.2 (a) Images from Fig.3 (b) Results of histogram equalization. (c) Corresponding
histograms.
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The inverse transformation from s back to r is denoted by

ro=T7s) k=0,12...,L —1

K K

Histogram specification.
Histogram Matching (Specification):

Histogram equalization automatically determines a transformation function that seeks to produce
an output image that has a uniform histogram.When automatic enhancement is desired, this is a
good approach because the results from this technique are predictable and the method is simple to
implement. In particular, it is useful sometimes to be able to specify the shape of the histogram
that we wish the processed image to have.The method used to generate a processed image that has
a specified histogram is called histogram matching or histogram specification.

Development of the method:

Let us return for a moment to continuous gray levels r and z (considered continuous random

variables), and let pr(r) and pz(z) denote their corresponding continuos probability density
functions. In this notation, r and z denote the gray levels of the input and output (processed)

images, respectively.We can estimate pr(r) from the given input image, while pz(z) is the specified
probability density function that we wish the output image to have.

Let s be a random variable with the property

§ = .['( [':1 = / [),I:: U.-‘) dw

where w is a dummy variable of integration.We recognize this expression as the continuos version
of histogram equalization. Suppose next that we define a random variable z with the property

G(z) = / p.(t)dt = s

where t is a dummy variable of integration. It then follows from these two equations that
G(z)=T(r) and, therefore, that z must satisfy the condition

o VE AN AR N T
2=G(s) =G |T(r)|.

The transformation T(r) can be obtained once pr(r) has been estimated from the input image.
Similarly, the transformation function G(z) can be obtained because pz(z) is given. Assuming that

G exists and that it satisfies conditions (@) and (b) in the histogram equalization process, the

above three equations show that an image with a specified probability density function can be
obtained from an input image by using the following procedure:

(1) Obtain the transformation function T(r).

(2) To obtain the transformation function G(z).

(3) Obtain the inverse transformation function G1

46
(4) Obtain the output image by applying above Eq. to all the pixels in the input image.



The result of this procedure will be an image whose gray levels, z, have the specified probability
density function pz(z). Although the procedure just described is straightforward in principle, it is

seldom possible in practice to obtain analytical expressions for T(r) and for Gt Fortunately, this
problem is simplified considerably in the case of discrete values.The price we pay is the same as
in histogram equalization,where only an approximation to the desired histogram is achievable. In
spite of this, however, some very useful results can be obtained even with crude approximations.
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where n is the total number of pixels in the image, nj is the number of pixels with gray level rj, and
L is the number of discrete gray levels. Similarly, the discrete formulation is obtained from the

given histogram pz (zi), i=0, 1, 2,...... , L-1, and has the form

As in the continuos case, we are seeking values of z that satisfy this equation.The variable vk was

added here for clarity in the discussion that follows. Finally, the discrete version of the above Eqn.
is given by

%= G'[T(rn)] k=0N¢...,L —1

Or

Implementation:

We start by noting the following: (1) Each set of gray levels {rj} , {sj}, and {zj}, =0, 1, 2, p, L-1,
is a one-dimensional array of dimension L X 1. (2) All mappings from r to s and from s to z are
simple table lookups between a given pixel value and these arrays. (3) Each of the elements of

these arrays, for example, sk, contains two important pieces of information: The subscript k
denotes the location of the element in the array, and s denotes the value at that location. (4) We
need to be concerned only with integer pixel values. For example, in the case of an 8-bit image,
L=256 and the elements of each of the arrays just mentioned are integers between 0 and 255.This
implies that we now work with gray level values in the interval [0, L-1] instead of the normalized
interval [0, 1] that we used before to simplify the development of histogram processing
techniques.

In order to see how histogram matching actually can be implemented, consider Fig. 5(a), ignoring
for a moment the connection shown between this figure and Fig. 5(c). Figure 5(a) shows a
hypothetical discrete transformation function s=T(r) obtained from a given image. The first gray

level in the image, r1 , maps to s1 ; the second gray level, r2 , maps to s2 ; the kth level rx maps to
sk; and so on (the important point here is the orgered correspondence between these values). Each
value sj in the array is precomputed, so the process of mapping simply uses the actual value of a



pixel as an index in an array to determine the corresponding value of s.This process is particularly
easy because we are dealing with integers. For example, the s mapping for an 8-bit pixel with
value 127 would be found in the 128th position in array {s;j} (recall that we start at 0) out of the
possible 256 positions. If we stopped here and mapped the value of each pixel of an input image
by the

Fig.5. (a) Graphical interpretation of mapping from ri to sk via T(r). (b) Mapping of zq to its
corresponding value vg via G(z) (c) Inverse mapping from sk to its corresponding value of
Zk.

method just described, the output would be a histogram-equalized image. In order to implement
histogram matching we have to go one step further. Figure 5(b) is a hypothetical transformation
function G obtained from a given histogram pz(z). For any zq, this transformation function yields
a corresponding value vg. This mapping is shown by the arrows in Fig. 5(b). Conversely, given
any value vq, we would find the corresponding value zq from GL. In terms of the figure, all this
means graphically is that we would reverse the direction of the arrows to map vgq into its
corresponding zq. However, we know from the definition that v=s for corresponding subscripts, so
we can use exactly this process to find the zk corresponding to any value sk that we computed
previously from the equation sk = T(rk) .This idea is shown in Fig.5(c).

Since we really do not have the z’s (recall that finding these values is precisely the objective of
histogram matching),we must resort to some sort of iterative scheme to find z from s.The fact that we are dealing with

integers makes this a particularly simple process. Basically, because vk = sk, we have that the z’s for which we are
looking must satisfy the equation G(zk)=s k, or (G(zk)-sk)=0. Thus, all we have to do to find the value of zk

corresponding to sk is to iterate on values of z such that this equation is satisfied for k=0,1,2,......., L-1. We do not have
to find the inverse of
G because we are going to iterate on z. Since we are dealing with integers, the closest we can get

to satisfying the equation (G(zk)-sk)=0 is to let zk= Z for each value of k, where Z is the smallest
integer in the interval [0, L-1] such that

(G(z) — ) =0 k=0,1,2,...,L—1,
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Given a value sk, all this means conceptually in terms of Fig. 5(c) is that we would start with and
increase it in integer steps until Eq is satisfied, at which point we let repeating this process for all
values of k would yield all the required mappings from s to z, which constitutes the
implementation of Eq. In practice, we would not have to start with each time because the values

of sk are known to increase monotonically. Thus, for k=k+1, we would start with ¢ = % and
increment in integer values from there.

Local enhancement.
Local Enhancement:

The histogram processing methods discussed in the previous two sections are global, in the sense
that pixels are modified by a transformation function based on the gray-level content of an entire
image. Although this global approach is suitable for overall enhancement, there are cases in which
it is necessary to enhance details over small areas in an image. The number of pixels in these areas
may have negligible influence on the computation of a global transformation whose shape does
not necessarily guarantee the desired local enhancement. The solution is to devise transformation
functions based on the gray-level distribution—or other properties—in the neighborhood of every
pixel in the image.

The histogram processing techniques are easily adaptable to
local enhancement.The procedure is to define a square or rectangular neighborhood and move the
center of this area from pixel to pixel. At each location, the histogram of the points in the
neighborhood is computed and either a histogram equalization or histogram specification
transformation function is obtained. This function is finally used to map the gray level of the

pixel centered in the neighborhood.The center of the neighborhood region is then moved to an
adjacent pixel location and the procedure is repeated. Since only one new row or column of the
neighborhood changes during a pixel-to-pixel translation of the region, updating the histogram
obtained in the previous location with the new data introduced at each motion step is possible.
This approach has obvious advantages over repeatedly computing the histogram over all pixels in
the neighborhood region each time the region is moved one pixel location.Another approach used
some times to reduce computation is to utilize nonoverlapping regions, but this method usually
produces an undesirable checkerboard effect.

Image subtaction.

Image Subtraction:

The difference between two images f(X, y) and h(x, y), expressed as
g(x,y) = f(x,y) — h(x,y),

is obtained by computing the difference between all pairs of corresponding pixels from f and h.
The key usefulness of subtraction is the enhancement of differences between images. The higher-
order bit planes of an image carry a significant amount of visually relevant detail, while the lower
planes contributemore to fine (often imperceptible) detail. Figure 7(a) shows the fractal image
used earlier to illustrate the concept of bit planes. Figure 7(b) shows the result of discarding
(setting to zero) the four least significant bit planes of the original image.The images are nearly
identical visually, with the exception of a very slight drop in overall contrast due to less variability
of the graylevel values in the image of Fig. 7(b).The pixel-by-pixel difference between these two
images is shown in Fig. 7(c).The differences in pixel values are so small that the difference image
appears nearly black when displayed on an 8-bit display. In order to bring out more detail,we can
perform a contrast stretching transformation. WZ 9chos.e histogram equalization, but an appropriate



power-law transformation would have done the job also. The result is shown in Fig. 7(d). This is a
very useful image for evaluating the effect of setting to zero the lower-order planes.

Fig.7 (a) Original fractal image (b) Result of setting the four lower-order bit planes to zero
(c) Difference between (a) and(b) (d) Histogram equalized difference image.

One of the most commercially successful and beneficial uses of image subtraction is in the area of
medical imaging called mask mode radiography. In this case h(x, y), the mask, is an X-ray image
of a region of a patient’s body captured by an intensified TV camera (instead of traditional X-ray
film) located opposite an X-ray source.The procedure consists of injecting a contrast medium into
the patient’s bloodstream, taking a series of images of the same anatomical region as h(x, y), and
subtracting this mask from the series of incoming images after injection of the contrast medium.
The net effect of subtracting the mask from each sample in the incoming stream of TV images is
that the areas that are different between f(X, y) and h(x, y) appear in the output image as enhanced
detail. Because images can be captured at TV rates, this procedure in essence gives a movie
showing how the contrast medium propagates through the various arteries in the area being
observed.

Image averaging process.
Image Averaging:

Consider a noisy image g(x, y) formed by the addition of noise h(x, y) to an original image f(x,y);
that is,

g(x,y) = flx y) + n(x, y)

where the assumption is that at every pair of coordinates (X, y) the noise is uncorrelated and has
zero average value.The objective of the following procedure is to reduce the noise content by

adding a set of noisy images, {gi (X, y)}. If the noise satisfies the constraints just stated, it can be

A

shown that if an image §L5 DY) is formed by averaging K different noisy images,
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Then it follows that

and

Og(xy) = T Tnix.y)

U;ﬁ (x,5)

Where £18(X, Y]} is the expected value of & and 72 () and are the variances of and

8 1, all at coordinates (X, y). The standard deviation at any point in the average image is

[a—y

Ozix.v) = T =Ty
5 K fAC

As K increases, the above equations indicate that the variability (noise) of the pixel values at

each location (x, y) decreases.Because =& (%, ¥)s = FIX V). this means that §(%» V)

approaches f(x, y) as the number of noisy images used in the averaging process increases. In

practice, the images gi(x, y) must be registered (aligned) in order to avoid the introduction of
blurring and other artifacts in the output image.

Filtering in spatial domain.

Basics of Spatial Filtering:

Some neighborhood operations work with the values of the image pixels in the neighborhood and
the corresponding values of a subimage that has the same dimensions as the neighborhood.The
subimage is called a filter,mask, kernel, template, or window,with the first three terms being the
most prevalent terminology.The values in a filter subimage are referred to as coefficients, rather
than pixels. The concept of filtering has its roots in the use of the Fourier transform for signal
processing in the so-called frequency domain. We use the term spatial filtering to differentiate this
type of process from the more traditional frequency domain filtering.

The mechanics of spatial filtering are illustrated in Fig.9.1. The process consists simply of moving
the filter mask from point to point in an image. At each point (X, y), the response of the filter at
that point is calculated using a predefined relationship. The response is given by a sum of products
of the filter coefficients and the corresponding image pixels in the area spanned by the filter mask.
For the 3 x 3 mask shown in Fig. 9.1, the result (or response), R, of linear filtering with the filter
mask at a point (X, y) in the image is

R=w-1,-1)f(x =1,y — 1) + w(=1,0)f(x — 1,y) + -

+ w(0,0)f(x,y) +--+ w(l,0)f(x +1,y) + w(1,1)f(x+ 1,y + 1),
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which we see is the sum of products of the mask coefficients with the corresponding pixels
directly under the mask. Note in particular that the coefficient w(0, 0) coincides with image

value f(x, y), indicating that the mask is centered at (x, y) when the computation of the sum of
products takes place. For a mask of size m x n,we assume that m=2a+1 and n=2b+1,where a and b
are nonnegative integers.

s Image origin
-

Mask

Image fix, ¥)

oy, 1

Mask cocfficients, shalanz
caard maic arrangsment

Pixek of image
scction under mask

Fig.9.1 The mechanics of spatial filtering. The magnified drawing shows a 3X3 mask and the
image section directly under it; the image section is shown displaced out from under the
mask for ease of readability.

In general, linear filtering of an image f of size M x N with a filter mask of size m x n is given by
the expression:

where, from the previous paragraph, a=(m-1)/2 and b=(n-1)/2. To generate a complete filtered
image this equation must be applied for x=0,1,2,...... , M-1 and y=0,1,2,...... , N-1. In this way,

we are assured that the mask processes all pixels in the image. It is easily verified when m=n=3
that this expression reduces to the example given in the previous paragraph.

The process of linear filtering is similar to a frequency domain concept called convolution. For
this reason, linear spatial filtering often is referred to as “convolving a mask with an image.”
Similarly, filter masks are sometimes called convolution masks. The term convolution kernel also
is in common use. When interest lies on the response, R, of an m x n mask at any point (x,y), and
not on the mechanics of implementing mask convolution, it is common practice to simplify the
notation by using the following expression: 52



where the w’s are mask coefficients, the z’s are the values of the image graylevels corresponding
to those coefficients, and mn is the total number of coefficients in the mask. For the 3 x 3 general
mask shown in Fig.9.2 the response at any point (X, y) in the image is given by

R=wz +wZ +.. U2

wy wWs Wg

Vg Wy

Fig.9.2 Another representation of a general 3 x 3 spatial filter mask.

An important consideration in implementing neighborhood operations for spatial filtering is the
issue of what happens when the center of the filter approaches the border of the image.Consider
for simplicity a square mask of size n x n.At least one edge of such a mask will coincide with the
border of the image when the center of the mask is at a distance of (n-1)/2 pixels away from the
border of the image. If the center of the mask moves any closer to the border, one or more rows or
columns of the mask will be located outside the image plane.There are several ways to handle this
situation.The simplest is to limit the excursions of the center of the mask to be at a distance no less
than (n-1)/2 pixels from the border. The resulting filtered image will be smaller than the original,
but all the pixels in the filtered imaged will have been processed with the full mask. If the result is
required to be the same size as the original, then the approach typically employed is to filter all
pixels only with the section of the mask that is fully contained in the image.With this approach,
there will be bands of pixels near the border that will have been processed with a partial filter
mask.Other approaches include “padding” the image by adding rows and columns of 0’s (or other
constant gray level), or padding by replicating rows or columns.The padding is then stripped off at
the end of the process.

This keeps the size of the filtered image the same as the original, but the values of the padding will
have an effect near the edges that becomes more prevalent as the size of the mask increases.The
only way to obtain a perfectly filtered result is to accept a somewhat smaller filtered image by
limiting the excursions of the center of the filter mask to a distance no less than (n-1)/2 pixels
from the border of the original image.
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Smoothing Spatial filters.

Smoothing Spatial Filters:

Smoothing filters are used for blurring and for noise reduction. Blurring is used in preprocessing
steps, such as removal of small details from an image prior to (large) object extraction, and
bridging of small gaps in lines or curves. Noise reduction can be accomplished by blurring with a
linear filter and also by non-linear filtering.

(1) Smoothing Linear Filters:

The output (response) of a smoothing, linear spatial filter is simply the average of the pixels
contained in the neighborhood of the filter mask. These filters sometimes are called averaging
filters. The idea behind smoothing filters is straightforward.By replacing the value of every pixel

in an image by the average of the gray levels in the neighborhood defined by the filter mask, this
process results in an image with reduced “sharp” transitions in gray levels. Because random noise
typically consists of sharp transitions in gray levels, the most obvious application of smoothing is
noise reduction.However, edges (which almost always are desirable features of an image) also are
characterized by sharp transitions in gray levels, so averaging filters have the undesirable side
effect that they blur edges. Another application of this type of process includes the smoothing of
false contours that result from using an insufficient number of gray levels.

G |-
o
[

Fig.10.1 Two 3 x 3 smoothing (averaging) filter masks.The constant multiplier in front of
each mask is equal to the sum of the values of its coefficients, as is required to compute an
average.

A major use of averaging filters is in the reduction of “irrelevant” detail in an image. By

“irrelevant”we mean pixel regions that are small with respect to the size of the filter mask.

Figure 10.1 shows two 3 x 3 smoothing filters. Use of the first filter yields the standard average of
the pixels under the mask.This can best be seen by substituting the coefficients of the mask in

R = Z:

O |-

which is the average of the gray levels of the pixels in the 3 x 3 neighborhood defined by the
mask.Note that, instead of being 1/9, the coefficients of the filter are all 1’s.The idea here is that it
is computationally more efficient to have coefficients valued 1. At the end of the filtering process
the entire image is divided by 9. An m x n mask would have a normalizing constant equal to 1/mn.

54
A spatial averaging filter in which all coefficients are equal is sometimes called a box filter.



The second mask shown in Fig.10.1 is a little more interesting. This mask yields a so-called
weighted average, terminology used to indicate that pixels are multiplied by different coefficients,
thus giving more importance (weight) to some pixels at the expense of others. In the mask shown
in Fig. 10.1(b) the pixel at the center of the mask is multiplied by a higher value than any other,
thus giving this pixel more importance in the calculation of the average.The other pixels are
inversely weighted as a function of their distance from the center of the mask. The diagonal terms
are further away from the center than the orthogonal neighbors (by a factor of V2) and, thus, are
weighed less than these immediate neighbors of the center pixel. The basic strategy behind
weighing the center point the highest and then reducing the value of the coefficients as a function
of increasing distance from the origin is simply an attempt to reduce blurring in the smoothing
process. We could have picked other weights to accomplish the same general objective. However,
the sum of all the coefficients in the mask of Fig. 10.1(b) is equal to 16, an attractive feature for
computer implementation because it has an integer power of 2. In practice, it is difficult in general
to see differences between images smoothed by using either of the masks in Fig. 10.1, or similar
arrangements, because the area these masks span at any one location in an image is so small.

The general implementation for filtering an M x N image with a weighted averaging filter of size
m x n (m and n odd) is given by the expression

(2) Order-Statistics Filters:

Order-statistics filters are nonlinear spatial filters whose response is based on ordering (ranking)
the pixels contained in the image area encompassed by the filter, and then replacing the value of
the center pixel with the value determined by the ranking result. The best-known example in this
category is the median filter, which, as its name implies, replaces the value of a pixel by the
median of the gray levels in the neighborhood of that pixel (the original value of the pixel is
included in the computation of the median). Median filters are quite popular because, for certain
types of random noise, they provide excellent noise-reduction capabilities, with considerably less
blurring than linear smoothing filters of similar size. Median filters are particularly effective in the
presence of impulse noise, also called salt-and-pepper noise because of its appearance as white
and black dots superimposed on an image.

The median, €, of a set of values is such that half the values in the set are less than or equal to &,
and half are greater than or equal to €. In order to perform median filtering at a point in an image,
we first sort the values of the pixel in question and its neighbors, determine their median, and

assign this value to that pixel. For example, in a 3 x 3 neighborhood the median is the 5th largest
value, in a 5 x 5 neighborhood the 13th largest value, and so on. When several values in a
neighborhood are the same, all equal values are grouped. For example, suppose that a 3 x 3
neighborhood has values (10, 20, 20, 20, 15, 20, 20, 25, 100). These values are sorted as (10, 15,
20, 20, 20, 20, 20, 25, 100), which results in a median of 20. Thus, the principal function of
median filters is to force points with distinct gray levels to be more like their neighbors. In fact,
isolated clusters of pixels that are light or dark with respect to their neighbors, and whose area is

less than n® / 2 (one-half the filter area), are eliminated by an n x n median filter. In this case

“eliminated” means forced to the median intensity of the neighbors. Larger clusters are affected

considerably less.
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Gradiant and the Laplacian in image enhancement.
Use of Second Derivatives for Enhancement—The Laplacian:

The approach basically consists of defining a discrete formulation of the second-order derivative
and then constructing a filter mask based on that formulation. We are interested in isotropic filters,
whose response is independent of the direction of the discontinuities in the image to which the
filter is applied. In other words, isotropic filters are rotation invariant, in the sense that rotating the
image and then applying the filter gives the same result as applying the filter to the image first and
then rotating the result.

Development of the method:

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic derivative operator is the
Laplacian, which, for a function (image) f(X, y) of two variables, is defined as

aAf  Pf

-7 SO W W

ax?  ay?

Because derivatives of any order are linear operations, the Laplacian is a linear operator. In order
to be useful for digital image processing, this equation needs to be expressed in discrete form.
There are several ways to define a digital Laplacian using neighborhoods. digital second.Taking
into account that we now have two variables, we use the following notation for the partial second-
order derivative in the x-direction:

of . ‘
,‘,' >=f(x £ 1,9 f(x 1,y) — 2f(x,y)
d X"

and, similarly in the y-direction, as

& f | \ \
=Gy Bl ) + f(x,y— 1) —2f(x,y)
oy

The digital implementation of the two-dimensional Laplacian in Eq. is obtained by summing these
two components

-~

Vf=[fx+1Ly)+flx—Ly)+Fflr,y+ 1)+ flx,y — 1)]

— 4f(x,y). (

This equation can be implemented using the mask shown in Fig.11.1(a), which gives an isotropic
result for rotations in increments of 90°.

The diagonal directions can be incorporated in the definition of the digital Laplacian by adding
two more terms to Eq., one for each of the two diagonal directions.The form of each new term is
the same as either Eq.
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Fig.11.1. (a) Filter mask used to implement the digital Laplacian (b) Mask used to
implement an extension of this equation that includes the diagonal neighbors. (c) and (d)
Two other implementations of the Laplacian.

but the coordinates are along the diagonals. Since each diagonal term also contains a —2f(x, y)
term, the total subtracted from the difference terms now would be —8f(x, y). The mask used to
implement this new definition is shown in Fig.11.1(b). This mask yields isotropic results for
increments of 45°. The other two masks shown in Fig. 11 also are used frequently in practice.

They are based on a definition of the Laplacian that is the negative of the one we used here. As
such, they vyield equivalent results, but the difference in sign must be kept in mind when
combining (by addition or subtraction) a Laplacian-filtered image with another image.

Because the Laplacian is a derivative operator, its use highlights gray-level discontinuities in an
image and deemphasizes regions with slowly varying gray levels.This will tend to produce images
that have grayish edge lines and other discontinuities, all superimposed on a dark, featureless
background.Background features can be “recovered” while still preserving the sharpening effect
of the Laplacian operation simply by adding the original and Laplacian images. As noted in the
previous paragraph, it is important to keep in mind which definition of the Laplacian is used. If the
definition used has a negative center coefficient, then we subtract, rather

than add, the Laplacian image to obtain a sharpened result. Thus, the basic way in which we use
the Laplacian for image enhancement is as follows:

f(x,y) — Vf(x,y) if the center coefficient of the

T Laplacian mask is negative
gLXsY) =\ : i > ST z
f(x,y)+ Vf(x, y) if the center coefficient of the

Laplacian mask is positive.

Use of First Derivatives for Enhancement—The Gradient:

First derivatives in image processing are implemented using the magnitude of the gradient. For a
function f(x, y), the gradient of f at coordinates (X, y) is defined as the two-dimensional column
vector 57



The magnitude of this vector is given by

Vf = mag(Vf)
r 271/2

G2 + G2
".' (' 1 ‘f ‘."| - n'l‘ (’ 1 f ...‘| - 12
\ < » \ 9 | :
\ dX ,~" \dy/

The components of the gradient vector itself are linear operators, but the magnitude of this vector
obviously is not because of the squaring and square root operations. On the other hand, the partial
derivatives are not rotation invariant (isotropic), but the magnitude of the gradient vector is.
Although it is not strictly correct, the magnitude of the gradient vector often is referred to as the
gradient.

The computational burden of implementing over an entire image is not trivial, and it is common
practice to approximate the magnitude of the gradient by using absolute values instead of squares
and square roots:

Vf = |G| +9G, |

This equation is simpler to compute and it still preserves relative changes in gray levels, but the
isotropic feature property is lost in general. However, as in the case of the Laplacian, the isotropic
properties of the digital gradient defined in the following paragraph are preserved only for a
limited number of rotational increments that depend on the masks used to approximate the
derivatives. As it turns out, the most popular masks used to approximate the gradient give the
same result only for vertical and horizontal edges and thus the isotropic properties of the gradient
are preserved only for multiples of 90°.

As in the case of the Laplacian, we now define digital
approximations to the preceding equations, and from there formulate the appropriate filter masks.
In order to simplify the discussion that follows, we will use the notation in Fig. 11.2 (a) to denote
image points in a 3 x 3 region. For example, the center point, z5, denotes f(X, y), z1 denotes f(x-1,
y-1), and so on. The simplest approximations to a first-order derivative that satisfy the conditions
stated in that section are Gx = (zg —z5) and Gy = (z6 — z5) . Two other definitions proposed by
Roberts [1965] in the early development of digital image processing use cross differences:

G, = (29— z) and G, = (zs — zg)s
we compute the gradient as

v"z |7, — 2. 1" = |7, — 7.1
. \<9 <5) <5 <5)

If we use absolute values, then substituting the quantities in the equations gives us the following
approximation to the gradient:

This equation can be implemented with the two masks shown in Figs. 11.2 (b) and(c). These
masks are referred to as the Roberts cross-gradisegt operators. Masks of even size are awkward to



implement. The smallest filter mask in which we are interested is of size 3 x 3.An approximation
using absolute values, still at point zs , but using a 3*3 mask, is

Vf = |(z: + 2z

The difference between the third and first rows of the 3 x 3 image region approximates the
derivative in the x-direction, and the difference between the third and first columns approximates
the derivative in the y-direction. The masks shown in Figs. 11.2 (d) and (e), called the Sobel
operators. The idea behind using a weight value of 2 is to achieve some smoothing by giving more
importance to the center point. Note that the coefficients in all the masks shown in Fig. 11.2 sum
to 0, indicating that they would give a response of 0 in an area of constant gray level, as expected

of a derivative operator.

0 0 0 -2 0 2

a

bc
de
Fig.11.2 A 3 x 3 region of an image (the z’s are gray-level values) and masks used to compute

the gradient at point labeled z5 . All masks coefficients sum to zero, as expected of a
derivative operator.
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Freguency domain technigues of image enhancement

Enhancement In Frequency Domain:

The frequency domain methods of image enhancement are based on convolution theorem. This is
represented as,

g(x, y) = h (x, y)*f(x, y)
Where.
g(x, y) = Resultant image
h(x, y) = Position invariant operator
f(x, y)= Input image
The Fourier transform representation of equation above is,

G(u,v)=H(u,Vv)F(u,vV)

The function H (u, v) in equation is called transfer function. It'is used to boost the edges of input
image f (X, y) to emphasize the high frequency components.

The different frequency domain methods for image enhancement are as follows.

2. Contrast stretching.

3. Clipping and thresholding.
4. Digital negative.

5. Intensity level slicing and
6. Bit extraction.

1. Contrast Stretching:

Due to non-uniform lighting conditions, there may be poor contrast between the background and
the feature of interest. Figure 1.1 (a) shows the contrast stretching transformations.

h (D)

‘ Where
‘ b (D)= Hiogam

| SRR TS aamm_— Y

D, D

Fig.1.1 (a) Histogram of input image

s - -
D D

Fig.1.1 (b) Linear Law
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Fig.1.1 (c) Histogram of the transformed image

These stretching transformations are expressed as

In the area of stretching the slope of transformation is considered to be greater than unity. The
parameters of stretching transformations i.e., a and b can be determined by examining the
histogram of the image.

2. Clipping and Thresholding:

Clipping is considered as the special scenario of contrast stretching. It is the case in which the
parameters are oo =y = 0. Clipping is more advantageous for reduction of noise in input signals of
range [a, b].

Threshold of an image is selected by means of its histogram. us take the image shown in the

following figure 1.2.

Fig. 1.2

The figure 1.2 (b) consists of two peaks i.e., background and object. At the abscissa of histogram
minimum (D1) the threshold is selected. This selected threshold (D1) can separate background
and object to convert the image into its respective binary form. The thresholding transformations
are shown in figure 1.3.

Fig.1.3



3. Digital Negative:

The digital negative of an image is achieved by reverse scaling of its grey levels to the
transformation. They are much essential in displaying of medical images.

A digital negative transformation of an image is shown in figure 1.4.

Fig.1.4

4. Intensity Level Slicing:

kground and other objects
f changing intensity level is done with

The images which consist of grey levels in be
require to reduce the intensity of the object.
the help of intensity level slicing. They ar

The histogram of input image and its respective intensity level slicing is shown in the figure 1.5.

When an image is uniformly quantized then, the nt" most significant bit can be extracted and
displayed.

Let u=ky 281+ ko 2B24 . + kg1 2+ ks

Then, the output is expressed as




D
techniques.

ifference between spatial domain and frequency domain enhancement

The spatial domain refers to the image plane itself, and approaches in this category are based on
direct manipulation of pixels in an image. Frequency domain processing techniques are based on
modifying the Fourier transform of an image.

The term spatial domain refers to the aggregate of pixels
composing an image and spatial domain methods are procedures that operate directly on these
pixels. Image processing function in the spatial domain may he expressed as.

g(x, y) = T[f(x, y)]

Where

f(x, y) is the input image

g(x, y) is the processed image and

T is the operator on f defined over some neighborhood values of
x, y).

Frequency domain techniques are based on convolution theorem. Let g(x, y) be the image formed
by the convolution of an image f(x, y) and linear position invariant operation h(x, y) i.e.,

g(x, y) = h(x, y) * f(x, y)
Applying convolution theorem

G(u, v) = H(u, v) F(u, v)

Where G, H and F are the Fourier transforms of g, h and f respectively. In the terminology of
linear system the transform H (u, v) is called the transfer function of the process. The edges in
f(x, y) can he boosted by using H (u, v) to emphasize the high frequency components of F (u, v).

Ideal Low Pass Filter (ILPF) in frequency domain.
Lowpass Filter:

The edges and other sharp transitions (such as noise) in the gray levels of an image contribute
significantly to the high-frequency content of its Fourier transform. Hence blurring (smoothing)
is achieved in the frequency domain by attenuating us the transform of a given image.

G (u,v) =H (u, v) F(u, v)

where F (u, V) is the Fourier transform of an image to be smoothed. The problem is to select a
filter transfer function H (u, v) that yields G (u, v) by attenuating the high-frequency components
of F (u, v). The inverse transform then will yield the desired smoothed image g (X, Y).

Ideal Filter:

A 2-D ideal lowpass filter (ILPF) is one whose transfer function satisfies the relation

1 if D(u, v) = D,
H(y, v) = | 63
10 if D(u, v) > D,



where D is a specified nonnegative quantity, and D(u, v) is the distance from point (u, v) to the
origin of the frequency plane; that is,

D(u, v) = (&8 + V)"

Figure 3 (a) shows a 3-D perspective plot of H (u, v) u a function of u and v. The name ideal
filter indicates that oil frequencies inside a circle of radius

Hu, v)

0 - e [Xa, V)
. Dy .y
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Fig.3 (a) Perspective plot of an ideal lowpass filter transfer function; (b) filter cross
section.

Do are passed with no attenuation, whereas all frequencies outside this circle are completely
attenuated.

The lowpass filters are radially symmetric about the origin. For this type of filter,
specifying a cross section extending as a function of distance from the origin along a radial line
is sufficient, as Fig. 3 (b) shows. The complete filter transfer function can then be generated by
rotating the cross section 360 about the origin. Specification of radially symmetric filters
centered on the N x N frequency square is based on the assumption that the origin of the Fourier
transform has been centered on the square.

For anideal lowpass filter cross section, the point of transition between H(u, v) =

1 and H(u, v) = 0 is often called the cutoff frequency. In the case of Fig.3 (b), for example, the
cutoff frequency is Do. As the cross section is rotated about the origin, the point Do traces a circle
giving a locus of cutoff frequencies, all of which are a distance Do from the origin. The cutoff
frequency concept is quite useful in specifying filter characteristics. It also serves as a common
base for comparing the behavior of different types of filters.

The sharp cutoff frequencies of an ideal lowpass filter cannot be realized with electronic
components, although they can certainly be simulated in a computer.

Butterworth lowpass filter with a suitable example.
Butterworth filter:

The transfer function of the Butterworth lowpass (BLPF) of order n and with cutoff frequency
locus at a distance Do, from the origin is defined by the relation

1

HE, ) = T D, D

A perspective plot and cross section of the BLPi‘—A’function are shown in figure 4.



Fig.4 (a) A Butterworth lowpass filter (b) radial cross section for n = 1.

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that establishes a
clear cutoff between passed and filtered frequencies. For filters with smooth transfer functions,
defining a cutoff frequency locus at points for which H (u, v) is down to a certain fraction of its
maximum value is customary. In the case of above Eq. H (u, v) = 0.5 (down 50 percent from its
maximum value of 1) when D (u, v) = Do. Another value commonly used is 1/72 of the
maximum value of H (u, v). The following simple modification yields the desired value when D
(u, v) = Do:

l L.
1+ (V2 = 1)[B(u, v)yDoJ*
1
" 1+ 0.414[D(u, vWDJ*

H(u,v) =

Ideal High Pass Filter and Butterworth High Pass filter.
High pass Filtering:

An image can be blurred by attenuating the high-frequency components of its Fourier transform.
Because edges and other abrupt changes in gray levels are associated with high-frequency
components, image sharpening can be achieved in the frequency domain by a high pass filtering
process, which attenuates the low-frequency components without disturbing high-frequency
information in the Fourier transform.

Ideal filter:

2-D ideal high pass filter (IHPF) is one whose transfer function satisfies the relation

]o if D(u, v) = D,
H(u,v) =
Il if D(u. V) > Du

where Do is the cutoff distance measured from the origin of the frequency plane. Figure 5.1
shows a perspective plot and cross section of the IHPF function. This filter is the opposite of the
ideal lowpass filter, because it completely attenuates all frequencies inside a circle of radius Do
while passing, without attenuation, all frequencies outside the circle. As in the case of the ideal
lowpass filler, the IHPF is not physically realizable.

65
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Fig.5.1 Perspective plot and radial cross section of ideal high pass filter

Butterworth filter:

The tra nsfer function of the B utterworth high pass filter (BHPF ) of order n and with
cutoff frequency locus at a distance Do from th e origin is d efined by the relation

1

Hw, v) = 1 DJDG, VP

Figure 5.2 shows a perspective plot and cross section of the B HPF function. Note that when D
(u,v) =Do, H (u, v) is dow n to ¥ of its maximu m value. A s in the ¢ ase of the Butterworth

lowpas s filter, com mon practice is to select the cut off frequen cy locus at points for which H (u,
v) is down to 1/72 of its maximum value.

1
H(. v) = 7213 = 1)[D/DG@s I
1
" 1+ 0.214[D/Dlu, V)"

Hu, v)

(a}

Fig.5.2 Perspectiv e plot and radial cro ss section for Butterw orth High Pass Filter withn=1
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Gaussian High Pass and Gaussian Low Pass Filter.

Gaussian Lowpass Filters:

The form of these filters in two dimensions is given by

H(“ I\) 4 /)(,,.,,)“-,”,;

where, D(u, V) is the distance from the origin of the Fourier transform.

H(u,v) H(u,v)

‘\ ) D, =10

0.667 F \.“.’ D 20

v \ D, = 40
: : 1\ X'\~ D, = 100

B e PV O\ X

e S . <,

= ¢ = - = D(u, v)
u

abec

Fig.6.1 (a) Perspective plot of a GLPF transfer function, (b) Filter displayed as an image, (c)
Filter radial cross sections for various values of Do.

= is a measure of the spread of the Gaussian curve. By letting o = Du, we can express the filter in
a more familiar form in terms of the notation:

H(u’ ’l-’) = e D*(u.v)/2D;

where Do is the cutoff frequency. When D (u, v) = Do, the filter is down to 0.607 of its maximum
value.

Gaussian Highpass Filters:

The transfer function of the Gaussian highpass filter (GHPF) with cutoff frequency locus at a
distance Do from the origin is given by

The figure 6.2 shows a perspective plot, image, and cross section of the GHPF function.

see. H(u,v) ]

D(u.v)
7



Fig.6.2. Perspective plot, image representation, and cross section of a typical Gaussian high
pass filter

Even the filtering of the smaller objects and thin bars is cleaner with the Gaussian filler.

Laplacian in frequency domain.

The Laplacian in the Frequency Domain:

It can be shown that

m{d”f(X)

S|~ ] = (ju)"F(u).

From this simple expression, it follows that

,\.[f’zf(x,y) ﬁzf(x,y)]
N a7 + o 2
dx” dy”

= (ju)’F(u,v) + (jv)’F(u,v)
= —(1? + v )F(u. v).

The expression inside the brackets on the left side of the above Eq. is recognized as the Laplacian
of f(X, y). Thus, we have the important result

[V (x, y)] = —(ud+ 4, v);
which simply says that the Laplacian can be implemented in the frequency domain by using the filter
HY v) = —(Gfv°).

As in all filtering operations, the assumption is that the origin of F (u, v) has been centered by

performing the operation f(x, y) (-1) Xy prior to taking the transform of the image. If f (and F) are
of size M X N, this operation shifts the center transform so that (u, v) = (0, 0) is at point (M/2,
N/2) in the frequency rectangle. As before, the center of the filter function also needs to be shifted:

H(u,v) = —[(u — M/2)* + (v — N/2)?].

The Laplacian-filtered image in the spatial domain is obtained by computing the inverse Fourier
transform of H (u, v) F (u, v):

Vif(x,y) = IY{~[(u — M/2)* + (v — N/2)*|F(u,v)}.

Conversely, computing the Laplacian in the spatial domain and computing the Fourier transform
of the result is equivalent to multiplying F(u, v) by H(u, v). We express this dual relationship in
the familiar Fourier-transform-pair notation

Vif(x,y) © —[(u — M/2)* + (v — N/2)*]F(u, v).

The spatial domain Laplacian filter function obtained by taking the inverse Fourier transform of
Eq. has some interesting properties, as Fig.7 shows. Figure 7(a) is a 3 -D perspective plot. The
function is centered at (M/2, N/2), and its value at the top of the dome is zero. All other values are
negative. Figure 7(b) shows H (u, v) as an image, also centered. Figure 7(c) is the Laplacian in the

spatial domain, obtained by multiplying by kdu, v) by (-1)”+V , taking the inverse Fourier
transform, and multiplying the real part of the result by (-I)X+y . Figure 7(d) is a zoomed section at



about the origin of Fig.7(c)." Figure 7(e) is a horizontal gray-level profile passing through the

center of the zoomed section. Finally, Fig.7 (f) shows the mask to implement the definition of the
discrete Laplacian in the spatial domain.

y

" 0 I ‘ 0
Fi@.}g(g) 3 -D plot of Laplacian in the frequency domain, (b) Image representation of (a), (c)
Laplatian in the spatial domain obtained from the inverse DFT of (b) (d) Zoomed section of
the origin of (c). (e) Gray-level profile through the center of (d). (f) Laplacian mask

horizontal profile through the center of this mask has the same basic shape as the profile in Fig.
7(e) (that is, a negative value between two smaller positive values). We form an enhanced image
g(x, y) by subtracting the Laplacian from the original image:

g(x,y) = f(x,y) — V*f(x, y).

High boost and high frequency filtering.

High-Boost Filtering and High-Frequency Emphasis Filtering:

All the filtered images have one thing in common: Their average background intensity has been
reduced to near black. This is due to the fact that the highpass filters we applied to those images
eliminate the zero-frequency component of their Fourier transforms. In fact, enhancement using
the Laplacian does precisely this, by adding back the entire image to the filtered result. Sometimes
it is advantageous to increase the contribution made by the original image to the overall filtered
result. This approach, called high-boost filtering, is a generalization of unsharp masking. Unsharp
masking consists simply of generating a shar39mage by subtracting from an image a blurred



version of itself. Using frequency domain terminology, this means obtaining a highpass-filtered
image by subtracting from the image a lowpass-filtered version of itself. That is

fun(%: ¥) = F(x.9) — fip. ).
High-boost filtering generalizes this by multiplying f (x, y) by a constant A > 1:

fin = Af(x.y) = fip(x. y)-

Thus, high-boost filtering gives us the flexibility to increase the contribution made by the image to
the overall enhanced result. This equation may be written as

fun(x,y) = (A = Df(x,y) + f(x,9) = fio%, y)-
Then, using above Eq. we obtain

fin(%,y) = (A = 1)f(x,y) + fip(x, ).
This result is based on a highpass rather than a lowpass image. When A = 1, high-boost filtering
reduces to regular highpass filtering. As A increases past 1, the contribution made by the image

itself becomes more dominant.

We have Fhp (u,v) = F (u,v) — Fip (u,v). But Fip (u,v) = Hip (u,v)F(u,v), where Hyp is the transfer
function of a lowpass filter. Therefore, unsharp masking can be implemented directly in the
frequency domain by using the composite filter

th(u, v) =1- Hlp(u, V).
Similarly, high-boost filtering can be implemented with the composite filter
Hyp(u, v)= (A — 1) % Hyp(u, v)

with A > 1. The process consists of multiplying this filter by the (centered) transform of the input
image and then taking the inverse transform of the product. Multiplication of the real part of this

result by (-1) x*y gives us the high-boost filtered image fhp (X, y) in the spatial domain.

Concept of homomorphic filtering.

Homomorphic filtering:

The illumination-reflectance model can be used to develop a frequency domain procedure for
improving the appearance of an image by simultaneous gray-level range compression and contrast
enhancement. An image f(X, y) can be expressed as the product of illumination and reflectance
components:

flxy) =i(x, y)r(x, y).
Equation above cannot be used directly to operate separately on the frequency components of
illumination and reflectance because the Fourier transform of the product of two functions is not
separable; in other words,
. S{F(x. »)} = {i(x, »)}S{r(x 3}
Suppose, however, that we define

z(x, y) = Inf(x,y)
= Ini(x,y) + Inr(x, y).
Then
S{z(x, »)} = S{Inf(x,»)}
= S{Ini(x, y)} + S{Inr(x, y)}

Z(u, v) =76}(u, v) + F.(u,v)



where Fj (u, v) and Fr (u, v) are the Fourier transforms of In i(x, y) and In r(X, y), respectively. If
we process Z (u, v) by means of a filter function H (u, v) then, from

S(u,v) = H(u,v)Z(u, v)
= H(u,v)F(u,v) + H(u,v)F,(u,v)

where S (u, V) is the Fourier transform of the result. In the spatial domain,

Il

S8, v)}
S H(u, v)F(u,v)} + S {H(u, v)F,(u, v)}.

s(x, y)

By letting

i'(x,y) = S H(u,v)F(u, v)}
and

r'(x,y) = S H(u, v)F(u,v)},
Now we have
s(x,y) =i'(x,y) + r'(x, y).

Finally, as z (X, y) was formed by taking the logarithm of the original image f (x, y), the inverse
(exponential) operation yields the desired enhanced image, denoted by g(x, y); that is,

g, y) = &=
— ei'(-\‘.y) . er'(x‘)“)

= iO(x’ y)rU(x’ y)
where
o, ) =9
f(x,y) In DFT H(u, ) (DFT) ! exp g(x.y)

Fig.9.1 Homomorphic filtering approach for image enhancement

and
ro(x, y) = €'

are the illumination and reflectance components of the output image. The enhancement approach
using the foregoing concepts is summarized in Fig. 9.1. This method is based on a special case of
a class of systems known as homomorphic systems. In this particular application, the key to the
approach is the separation of the illumination and reflectance components achieved. The
homomorphic filter function H (u, v) can then operate on these components separately.

The illumination componenyof an image generally is characterized by slow
spatial variations, while the reflectance component tends to vary abruptly, particularly at the



junctions of dissimilar objects. These characteristics lead to associating the low frequencies of the
Fourier transform of the logarithm of an image with illumination and the high frequencies with
reflectance. Although these associations are rough approximations, they can be used to advantage
in image enhancement.

A good deal of control can be gained over the illumination and
reflectance components with a homomorphic filter. This control requires specification of a filter
function H (u, v) that affects the low- and high-frequency components of the Fourier transform in

different ways. Figure 9.2 shows a cross section of such a filter. If the parameters yL and yH are

chosen so that y_ < 1 and yH > 1, the filter function shown in Fig. 9.2 tends to decrease the
contribution made by the low frequencies (illumination) and amplify the contribution made by
high frequencies (reflectance). The net result is simultaneous dynamic range compression and
contrast enhancement.

H(u,v)

/7 | S ——

Vi

D(u, v)

Fig.9.2 Cross section of a circularly. symmetric filter function D (u. v) is the distance from
the origin of the centered transform.

72



MODULE IV

Image Enhancement: Frequency domain methods

e The concept of filtering is easier to visualize in the frequency
domain. Therefore, enhancement of image f(m,n) can be done
in the frequency domain, based on its DFT F(u,v).

e This is particularly useful, if the spatial extent of the point-
spread sequence h(m,n) is large. In this case, the convolution

)S

g(m,n) = hé, n)/: f (m,n)

Enhanced Image Given Image

may be computationally unattractive.

e We can therefore directly design a transfer function H(u,v) and
implement the enhancement in the frequency domain as
follows:

Transfer function

G(u,v) = H‘(u,v)/I; (u,v)

Enhanced Image Given Image
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L_owpass filtering

e Edges and sharp transitions in grayvalues in an image contribute
significantly to high-frequency content of its Fourier transform.

e Regions of relatively uniform grayvalues in an image contribute
to low-frequency content of its Fourier transform.

e Hence, an image can be smoothed in the Frequency domain by
attenuating the high-frequency content of its Fourier transform.
This would be a lowpass filter!

o For simplicity, we will consider only those filters that are real
and radially symmetric.

e An ideal lowpass filter with cutoff frequency r,:

H (U,) = 1, if Vu®+v? <r,
| 0, if Vu?+v?>r,
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200

2000 -200

Ideal LPF with r, =57

e Note that the origin (0, 0) is at the center and not the corner of
the image (recall the “f ftshi ft” operation).

e The abrupt transition from 1 to 0 of the transfer function
H(u,v) cannot be realized in practice, using electronic

components. However, it can be simulated on a computer.
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Ideal LPF examples

LPF image, r, =36 LPF image, r, =26

¢ Notice the severe ringing effect in the blurred images, which
Is a characteristic of ideal filters. It is due to the discontinuity
in the filter transfer function.
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Choice of cutoff frequency in ideal LPF

The cutoff frequency Iy of the ideal LPF determines the amount
of frequency components passed by the filter.

Smaller the value of Iy, more the number of image components
eliminated by the filter.

In general, the value of Iy is chosen such that most components

of interest are passed through, while most components not of
interest are eliminated.
Usually, this is a set of conflicting requirements. We will see
some details of this is image restoration
A useful way to establish a set of standard cut-off frequencies is
to compute circles which enclose a specified fraction of the total
image power.
N-1M -1
Suppose P, = P(u,v), where P(u,v) = |F(u,v)P, is the
v=0 u=0

total image power. _ )
Consider a circle of radius I'o(at) as a cutoff frequency with

respect to a threshold o such that ZZ P(u,v) = oP;.

We can then fix a threshold o and obtain an appropriate cutoff
frequency Ip(ct).
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Butterworth lowpass filter

¢ A two-dimensional Butterworth lowpass filter has transfer
function:

1

2n
14 Ju? +v?

Ko

H(u,v) =

e n: filter order, ro: cutoff frequency

. [ Butterworth LPF with
1 r,=36and n=1

EIBx

200

=200 -200

e Frequency response does not have a sharp transition as in the
ideal LPF.

e This is more appropriate for image smoothing than the ideal
LPF, since this not introduce ringing.
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Butterworth LPF example

LPF image, r,=18

.

LPF image, r,=13 LPF image, r, =10
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Butterworth LPF example: False
contouring

Image with false contouring Lowpass filtered version of
due to insufficient bits used previous image
for quantization
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Butterworth LPF example: Noise
filtering

Original Image

Noisy Image

LPF Image
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Gaussian Low pass filters

The form of a Gaussian lowpass filter in two-dimensions is
given by H (u,v) =e 2“2 ‘where D(u,v) = Ju2 +v2 is the
distance from the origin in the frequency plane.

The parameter o measures the spread or dispersion of the
Gaussian curve. Larger the value of o, larger the cutoff
frequency and milder the filtering.

When D(u,v) = o, the filter is down to 0.607 of its maximum
value of 1.

See Example 4.6 in the text for an illustration.

Also read section 4.3.4 for anapplication of lowpass filtering to
text images.
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Highpass filtering
e Edges and sharp transitions in grayvalues in an image contribute
significantly to high-frequency content of its Fourier transform.

e Regions of relatively uniform grayvalues in an image contribute
to low-frequency content of its Fourier transform.

e Hence, image sharpening in the Frequency domain can be done
by attenuating the low-frequency content of its Fourier
transform. This would be a highpass filter!

e For simplicity, we will consider only those filters that are real
and radially symmetric.

e An ideal highpass filter with cutoff frequency r,:

0, if VJu®+v?<r,
-1, if »ut+v: T,

H(u,v) =
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Ideal HPF with r, =36

e Note that the origin (0, 0) is at the center and not the corner of
the image (recall the “f ftshift” operation).

e The abrupt transition from 1 to O of the transfer function
H(uyv) cannot be realized in practice, using -electronic

components. However, it can be simulated on a computer.
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Ideal HPF examples

HPF image, r, =18

HPF image, r, =36 HPF image, r, =26

e Notice the severe ringing effect in the output images, which
Is a characteristic of ideal filters. It is due to the discontinuity
in the filter transfer function.
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Butterworth highpass filter

¢ A two-dimensional Butterworth highpass filter has transfer
function:

1

H(u,v) =

2n
rO

Ju? +v?2

o n: filter order, ro: cutoff frequency

1+

Butterworth HPF with
r,=47 and 2

200

=00 -200

e Frequency response does not have a sharp transition as in the
ideal HPF.

e This is more appropriate for image sharpening than the ideal
HPF, since this not introduce ringing.
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Butterworth HPF example

Original Image HPF image, r, =47

HPF image, r, =36 HPF image, r, =81
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Gaussian High pass filters

e The form of a Gaussian lowpass filter in two-dimensions is
given by H(u,v)=1—e 2 “/2%" \where D(u,v) = Vu? +Vv? is
the distance from the origin in the frequency plane.

e The parameter o measures the spread or dispersion of the
Gaussian curve. Larger the value of o, larger the cutoff
frequency and more severe the filtering.

e See Example in section 4.4.3 of text for an illustration.
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Digital Image Processing Module V

Derivative operators useful in image segmentation
Gradient operators:

First-order derivatives of a digital image are based on various approximations of the 2-D
gradient. The gradient of an image f (x, y) at location (x, y) is defined as the vector

af

vF - ’ G‘] - | >
6|7 | e

_dy

It is well known from vector analysis that the gradient vector points in the direction of maximum
rate of change of f at coordinates (x, y). An important quantity in edge detection is the magnitude
of this vector, denoted by f, where

Vf = mag(Vf) [G | G}JJ.‘;

This quantity gives the maximum rate of increase of f (x, y) per unit distance in the direction of f. It isa
common (although not strictly correct) practice to refer to falso as the gradient. The direction of the
gradient vector also is an important quantity. Let o (x, y) represent the direction

angle of the vector fat (X, y). Then, from vector analysis,

: G, )\
a(x,y) =ftan" ( )
G

v/

where the angle is measured with respect to the x-axis. The direction of an edge at (X, y) is
perpendicular to the direction of the gradient vector at that point. Computation of the gradient of
an image is based on obtaining the partial derivatives f/ x and f/ y at every pixel location. Let the
3x3 area shown in Fig. 1.1 (a) represent the gray levels in a neighborhood of an image. One of the
simplest ways to implement a first-order partial derivative at point z5 is to use the following
Roberts cross-gradient operators:

and

These derivatives can be implemented for an entire image by using the masks shown in Fig.
1.1(b). Masks of size 2 X 2 are awkward to implement because they do not have a clear center. An
approach using masks of size 3 X 3 is given by
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Fig.1.1 A 3 X 3 region of an image (the z’s are gray-level values) and various masks used to
compute the gradient at point labeled z5.

A weight value of 2 is used to achieve some smoothing by giving more importance to the center
point. Figures 1.1(f) and (g), called the Sobel operators, and are used to implement these two
equations. The Prewitt and Sobel operators are among the most used in practice for computing
digital gradients. The Prewitt masks are simpler to implement than the Sobel masks, but the latter
have slightly superior noise-suppression characteristics, an important issue when dealing with
derivatives. Note that the coefficients in all the masks shown in Fig. 1.1 sum to 0, indicating that
they give a response of 0 in areas of constant gray level, as expected of a derivative operator.

The masks just discussed are used to obtain the gradient components Gx and Gy. Computation of
the gradient requires that these two components be combined. However, this implementation is
not always desirable because of the computational burden required by squares and square roots.
An approach used frequently is to approximate the gradient by absolute values:

Vf ~ |G| + |G|

This equation is much more attractive computationally, and it still preserves relative changes in
gray levels. However, this is not an issue when masks such as the Prewitt and Sobel masks are
used to compute Gx and Gy.

It is possible to modify the 3 X 3 masks in Fig. 1.1 so that they have their strongest responses
along the diagonal directions. The two addjgional Prewitt and Sobel masks for detecting
discontinuities in the diagonal directions are shown in Fig. 1.2.



Sobel

Fig.1.2 Prewitt and Sobel masks for detecting diagonal edges

The Laplacian:

The Laplacian of a 2-D function f(X, y) is a second-order derivative defined as

T Vi

ax* o IV

V4
For a 3 X 3 region, one of the two forms encountered most frequently in practice is

B (2, -+ 2+ oz + z,)

|
. I i -

Fig.1.3 Laplacian masks used to implement Eqns. above.

where the z's are defined in Fig. 1.1(a). A digital approximation including the diagonal neighbors

is given by

Vﬁf = 825 (»Zy 2y & 2y &y Tt Tgek 29).

2N

Masks for implementing these two equations are shown in Fig. 1.3. We note from these masks that
the implementations of Eqns. are isotropic for roggfion increments of 90° and 45°, respectively.



Edage detection.

Intuitively, an edge is a set of connected pixels that lie on the boundary between two regions.
Fundamentally, an edge is a "local" concept whereas a region boundary, owing to the way it is
defined, is a more global idea. A reasonable definition of "edge™ requires the ability to measure
gray-level transitions in a meaningful way. We start by modeling an edge intuitively. This will
lead us to formalism in which "meaningful transitions in gray levels can be measured. Intuitively,
an ideal edge has the properties of the model shown in Fig. 2.1(a). An ideal edge according to this
model is a set of connected pixels (in the vertical direction here), each of which is located at an
orthogonal step transition in gray level (as shown by the horizontal profile in the figure).

In practice, optics, sampling, and other image acquisition imperfections yield edges that
are blurred, with the degree of blurring being determined by factors such as the quality of the
image acquisition system, the sampling rate, and illumination conditions under which the image is
acquired. As a result, edges are more closely modeled as having a "ramp like" profile, such as the
one shown in Fig.2.1 (b).

Fig.2.1 (a) Model of an ideal digital edge (b) Model of a ramp edge. The slope of the ramp is

proportional to the degree of blurring in the edge.

The slope of the ramp is inversely proportional to the degree of blurring in the edge. In this model,
we no longer have a thin (one pixel thick) path. Instead, an edge point now is any point contained
in the ramp, and an edge would then be a set of such points that are connected. The "thickness™ of
the edge is determined by the length of the ramp, as it transitions from an initial to a final gray
level. This length is determined by the slope, which, in turn, is determined by the degree of
blurring. This makes sense: Blurred edges lend to be thick and sharp edges tend to be thin. Figure
2.2(a) shows the image from which the close-up in Fig. 2.1(b) was extracted. Figure 2.2(b) shows
a horizontal gray-level profile of the edge between the two regions. This figure also shows the first
and second derivatives of the gray-level profile. The first derivative is positive at the points of
transition into and out of the ramp as we move from left to right along the profile; it is constant for
points in the ramp; and is zero in areas of constant gray level. The second derivative is positive at
the transition associated with the dark side of the edge, negative at the transition associated with
the light side of the edge, and zero along the ramp and in areas of constant gray level. The signs of
the derivatives in Fig. 2.2(b) would be reversed for an edge that transitions from light to dark.

We conclude from these observations that the magnitude of the first derivative can be used to
detect the presence of an edge at a point in an image (i.e. to determine if a point is on a ramp).
Similarly, the sign of the second derivative can be used to determine whether an edge pixel lies

on the dark or light side of an edge. We note two additional properties of the second derivative
around an edge: A) It produces two values for every edge in an image (an undesirable feature);
and B) an imaginary straight line joining the extreme positive and negative values of the second
derivative would cross zero near the midpoint of the edge. This zero-crossing property of the
second derivative is quite useful for locating the centers of thick edges.

92



Gray-level profile

Second

derivative

Fig.2.2 (a) Two regions separated by a vertical edge (b) Detail near the edge, showing a gray-
level profile, and the first and second derivatives of the profile.

Edge linking procedures.
The different methods for edge linking are as follows
(i) Local processing
(ii) Global processing via the Hough Transform

(iii) Global processing via graph-theoretic techniques.

(i) Local Processing:

One of the simplest approaches for linking edge points is to analyze the characteristics of pixels in
a small neighborhood (say, 3 X 3 or 5 X 5) about every point (x, y) in an image that has been
labeled an edge point. All points that are similar according to a set of predefined criteria are
linked, forming an edge of pixels that share those criteria.

The two principal properties used for establishing similarity of edge pixels in this kind of analysis
are (1) the strength of the response of the gradient operator used to produce the edge pixel; and (2)
the direction of the gradient vector. The first property is given by the value of f.

Thus an edge pixel with coordinates (Xo, Yo) in a predefined neighborhood of (x, y), is similar in

magnitude to the pixel at (X, y) if

, 93 :
Vi(xy) — Vftx ) =B



The direction (angle) of the gradient vector is given by Eq. An edge pixel at (Xo, yo) in the

predefined neighborhood of (x, y) has an angle similar to the pixel at (x, y) if

iu{.\p y) — a(xy, yo)| < A

where A is a nonnegative angle threshold. The direction of the edge at (X, y) is perpendicular to
the direction of the gradient vector at that point.

A point in the predefined neighborhood of (X, y) is linked to the pixel at (x, y) if both magnitude
and direction criteria are satisfied. This process is repeated at every location in the image. A
record must be kept of linked points as the center of the neighborhood is moved from pixel to
pixel. A simple bookkeeping procedure is to assign a different gray level to each set of linked edge
pixels.

(i) Global processing via the Hough Transform:

In this process, points are linked by determining first if they lie on a curve of specified shape. We
now consider global relationships between pixels. Given n points in an image, suppose that we
want to find subsets of these points that lie on straight lines. One possible solution is to first find
all lines determined by every pair of points and then find all subsets of points that are close to

particular lines. The problem with this procedure is that it involves finding n(n - 1)/2 ~ n? lines

and then performing (n)(n(n - 1))/2 ~ n3 comparisons of every point to all lines. This approach is
computationally prohibitive in all but the most trivial applications.

Hough [1962] proposed an alternative approach, commonly referred to as the Hough transform.
Consider a point (xi, y i) and the general equation of a straight line in slope-intercept form, yi =
a.xi + b. Infinitely many lines pass through (X i, yi) but they all satisfy the equation yi = a.xj + b for
varying values of a and b. However, writing this equation as b = -a.xi + yi, and considering the ab-
plane (also called parameter space) yields the equation of a single line for a fixed pair (Xi, Vi).
Furthermore, a second point (xj, yj) also has a line in parameter space associated with it, and this
line intersects the line associated with (xi, yi) at (a', b"), where a' is the slope and b' the intercept of

the line containing both (Xi, yi) and (X}, yj) in the xy-plane. In fact, all points contained on this line
have lines in parameter space that intersect at (a', b"). Figure 3.1 illustrates these concepts.

Fig.3.1 (a) xy-plane (b) Parametgr space
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Fig.3.2 Subdivision of the parameter plane for use in the Hough transform
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The computational attractiveness of the Hough transform arises from subdividing the parameter
space into so-called accumulator cells, as illustrated in Fig. 3.2, where (amax , amin) and (bmax ,

bmin), are the expected ranges of slope and intercept values. The cell at coordinates (i, j), with
accumulator value A(i, j), corresponds to the square associated with parameter space coordinates

(ai, bi).

Initially, these cells are set to zero. Then, for every point (xk, yk) in the image plane, we let the
parameter a equal each of the allowed subdivision values on the fl-axis and solve for the
corresponding b using the equation b = -'Xk a + yk .The resulting b’s are then rounded off to the

nearest allowed value in the b-axis. If @& choice of ap results in solution bg, we let A (p, q) = A (p,
g) + 1. At the end of this procedure, a value of Q in A (i, j) corresponds to Q points in the xy-
plane lying on the line y = aj x + bj. The number of subdivisions in the ab-plane determines the
accuracy of the co linearity of these points. Note that subdividing the a axis into K increments
gives, for every point (Xk; yk), K values of b corresponding to the K possible values of a. With n

image points, this method involves nK computations. Thus the procedure just discussed is linear in
n, and the product nK does not approach the number of computations discussed at the beginning
unless K approaches or exceeds n.

A problem with using the equation y = ax + b to represent a line is that the slope
approaches infinity as the line approaches the vertical. One way around this difficulty is to use the
normal representation of a line:

x cosO +y sinf = p

Figure 3.3(a) illustrates the geometrical interpretation of the parameters used. The use of this
representation in constructing a table of accumulators is identical to the method discussed for the
slope-intercept representation. Instead of straight lines, however, the loci are sinusoidal curves in

the pO -plane. As before, Q collinear points lying on a line x cos0j + y sinfj = p, yield Q sinusoidal
curves that intersect at (pi, 6j) in the parameter space. Incrementing 6 and solving for the
corresponding p gives Q entries in accumulator A (i, j) associated with the cell determined by (pi,
0j). Figure 3.3 (b) illustrates the subdivision of the parameter space.
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Fig.3.3 (a) Normal representation of a line (b) Subdivision of the p@-plane into cells

The range of angle 0 is £90°, measured with respect to the x-axis. Thus with reference to Fig. 3.3
(a), a horizontal line has 6 = 0°, with p being equal to the positive x-intercept. Similarly, a vertical
line has 8 = 90°, with p being equal to the positive y-intercept, or 6 = - 90°, with p being equal to
the negative y-intercept.

(iii) Global processing via graph-theoretic techniques

In this process we have a global approach for edge detection and linking based on representing
edge segments in the form of a graph and searching the graph for low-cost paths that correspond
to significant edges. This representation provides a rugged approach that performs well in the
presence of noise.
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Fig.3.4 Edge clement between pixels p and q

We begin the development with some basic definitions. A graph G = (N,U) is a finite, nonempty

set of nodes N, together with a set U of unordered pairs of distinct elements of N. Each pair (ni, nj)
of U is called an arc. A graph in which the arcs are directed is called a directed graph. If an arc is

directed from node nj to node nj, then nj is said to be a successor of the parent node nj. The
process of identifying the successors of a node is called expansion of the node. In each graph we
define levels, such that level 0 consists of a single node, called the start or root node, and the

nodes in the last level are called goal nodes. A cost ¢ (ni, n j) can be associated with every arc (nij,
nj). A sequence of nodes ni, n2... nk, with each node nj being a successor of node ni-1 is called a
path from n1 to nk. The cost of the entire path is

Cc = E"{\”: ,,11‘.).
!

he following discussion is simplified if we define an edge element as the boundary between two
pixels p and g, such that p and q are 4-neighbors, as Fig.3.4 illustrates. Edge elements are
identified by the xy-coordinates of points p andog In other words, the edge element in Fig. 3.4 is



defined by the pairs (Xp, yp) (X g, Yq). Consistent with the definition an edge is a sequence of
connected edge elements.

We can illustrate how the concepts just discussed apply to edge detection using the 3
X 3 image shown in Fig. 3.5 (a). The outer numbers are pixel

@ ® © e 1 o J & ™ ™ ©
| 6 [ [5] 6] [1 :
| =
° o s o [ 2 I ' @ ° o o
[6 / ““ |'("': 1 i‘»:‘ { / 4
‘]—~ |
f i ' ‘ ® ! ® ' e il ‘ * *
| ' (7 LI E) | :
abc

Fig.3.5 (a) A 3 X 3 image region, (b) Edge segments and their costs, (c) Edge corresponding
to the lowest-cost path in the graph shown in Fig. 3.6

coordinates and the numbers in brackets represent gray-level values. Each edge element, defined
by pixels p and g, has an associated cost, defined as

c(p.q) LH —4f(p) —f(q)]

where H is the highest gray-level value in the image (7 in this case), and f(p) and f(q) are the gray-
level values of p and q, respectively. By convention, the point p is on the right-hand side of the
direction of travel along edge elements. For example, the edge segment (1, 2) (2, 2) is between
points (1, 2) and (2, 2) in Fig. 3.5 (b). If the direction of travel is to the right, then p is the point
with coordinates (2, 2) and g is point with coordinates (1, 2); therefore, c (p,q) =7 - [7

- 6] = 6. This cost is shown in the box below the edge segment. If, on the other hand, we are
traveling to the left between the same two points, then p is point (1, 2) and q is (2, 2). In this case
the cost is 8, as shown above the edge segment in Fig. 3.5(b). To simplify the discussion, we
assume that edges start in the top row and terminate in the last row, so that the first element of an
edge can be only between points (1, 1), (1, 2) or (1, 2), (1, 3). Similarly, the last edge element has
to be between points (3, 1), (3, 2) or (3, 2), (3, 3). Keep in mind that p and g are 4-neighbors, as
noted earlier. Figure 3.6 shows the graph for this problem. Each node (rectangle) in the graph
corresponds to an edge element from Fig. 3.5.
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- An arc exists between two nodes if the two corresponding edge elements taken in succession
can be part of an edge.
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3.6 Graph for the image in Fig.3.5(a). The lowest-cost path is shown dashed.

As in Fig. 3.5 (b), the cost of each edge segment, is shown in a box on the side of the arc leading
into the corresponding node. Goal nodes are shown shaded. The minimum cost path is shown
dashed, and the edge corresponding to this path is shown in Fig. 3.5 (c).

Thresholding.
Thresholding:

Because of its intuitive properties and simplicity of implementation, image thresholding enjoys a
central position in applications of image segmentation.

Global Thresholding:

The simplest of all thresholding techniques is to partition the image histogram by using a single
global threshold, T. Segmentation is then accomplished by scanning the image pixel by pixel and
labeling each pixel as object or back-ground, depending on whether the gray level of that pixel is
greater or less than the value of T. As indicated earlier, the success of this method depends
entirely on how well the histogram can be partitioned.
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Digital Image Processing Question & Answers

a
b e Fig.4.1 FIGURE 10.28 (a) Original image, (b) Image histogram, (c) Result of global
thresholding with T midway between the maximum and minimum gray levels.

Figure 4.1(a) shows a simple image, and Fig. 4.1(b) shows its histogram. Figure 4.1(c) shows the
result of segmenting Fig. 4.1(a) by using a threshold T midway between the maximum and
minimum gray levels. This threshold achieved a "clean" segmentation by eliminating the shadows
and leaving only the objects themselves. The objects of interest in this case are darker than the
background, so any pixel with a gray level < T was labeled black (0), and any pixel with a gray
level > T was labeled white (255).The key objective is merely to generate a binary image, so the
black-white relationship could be reversed. The type of global thresholding just described can be
expected to be successful in highly controlled environments. One of the areas in which this often
Is possible is in industrial inspection applications, where control of the illumination usually is
feasible.
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The threshold in the preceding example was specified by using a heuristic
approach, based on visual inspection of the histogram. The following algorithm can be used to
obtain T automatically:

1. Select an initial estimate for T.

2. Segment the image using T. This will produce two groups of pixels: G1 consisting of all pixels
with gray level values >T and G2 consisting of pixels with values < T.

3. Compute the average gray level values p1 and p2 for the pixels in regions G1 and G2.

4. Compute a new threshold value:

1
T—Z(#1+#)'

5. Repeat steps 2 through 4 until the difference in T in successive iterations is smaller than
apredefined parameter To.

When there is reason to believe that the background and object occupy comparable areas in the
image, a good initial value for T is the average gray level of the image. When objects are small
compared to the area occupied by the background (or vice versa), then one group of pixels will
dominate the histogram and the average gray level is not as good an initial choice. A more
appropriate initial value for T in cases such as this is a value midway between the maximum and
minimum gray levels. The parameter To is used to stop the algorithm after changes become small
in terms of this parameter. This is used when speed of iteration is an important issue.

Basic adaptive thresholding process used in image segmentation.

Basic Adaptive Thresholding:

Imaging factors such as uneven illumination can transform a perfectly segmentable histogram
into a histogram that cannot be partitioned effectively by a single global threshold. An approach
for handling such a situation is to divide the original image into subimages and then utilize a
different threshold to segment each subimage. The key issues in this approach are how to
subdivide the image and how to estimate the threshold for each resulting subimage. Since the
threshold used for each pixel depends on the location of the pixel in terms of the subimages, this
type of thresholding is adaptive.




Fig.5 (a) Original image, (b) Result of global thresholding. (c) Image subdivided into
individual subimages (d) Result of adaptive thresholding.

We illustrate adaptive thresholding with a example. Figure 5(a) shows the image, which we
concluded could not be thresholded effectively with a single global threshold. In fact, Fig. 5(b)
shows the result of thresholding the image with a global threshold manually placed in the valley of
its histogram. One approach to reduce the effect of nonuniform illumination is to subdivide the
image into smaller subimages, such that the illumination of each subimage is approximately
uniform. Figure 5(c) shows such a partition, obtained by subdividing the image into four equal
parts, and then subdividing each part by four again. All the subimages that did not contain a
boundary between object and back-ground had variances of less than 75. All subimages containing
boundaries had variances in excess of 100. Each subimage with variance greater than 100 was
segmented with a threshold computed for that subimage using the algorithm. The initial

value for T in each case was selected as the point midway between the minimum and maximum
gray levels in the subimage. All subimages with variance less than 100 were treated as one
composite image, which was segmented using a single threshold estimated using the same
algorithm. The result of segmentation using this procedure is shown in Fig. 5(d).

With the exception of two subimages, the improvement over Fig. 5(b) is evident. The boundary
between object and background in each of the improperly segmented subimages was small and
dark, and the resulting histogram was almost unimodal.

Threshold selection based on boundary characteristics.

Use of Boundary Characteristics for Histogram Improvement and Local Thresholding:

It is intuitively evident that the chances of selecting a "good" threshold are enhanced considerably

if the histogram peaks are tall, narrow, symmetric, and separated by deep valleys. One approach
for improving the shape of histograms is to consider only those pixels that lie on or near the edges
between objects and the background. An immediate and obvious improvement is that histograms
would be less dependent on the relative sizes of objects and the background. For instance, the
histogram of an image composed of a small object on a large background area (or vice versa)
would be dominated by a large peak because of the high concentration of one type of pixels.

If only the pixels on or near the edge between object and the background were used, the
resulting histogram would have peaks of approximately the same height. In addition, the
probability that any of those given pixels lies on an object would be approximately equal to the
probability that it lies on the back-ground, thus improving the symmetry of the histogram peaks.

Finally, as indicated in the following paragraph, using pixels that satisfy
some simple measures based on gradient and Laplacian operators has a tendency to deepen the
valley between histogram peaks.

The principal problem with the approach just discussed is the implicit assumption that the edges
between objects and background arc known. This information clearly is not available during
segmentation, as finding a division between objects and background is precisely what
segmentation is all about. However, an indication of whether a pixel is on an edge may be
obtained by computing its gradient. In addition, use of the Laplacian can yield information
regarding whether a given pixel lies on the dark or light side of an edge. The average value of the
Laplacian is O at the transition of an edge, so in practice the valleys of histograms formed from

the pixels selected by a gradient/Laplacian criteﬂigrl can be expected to be sparsely populated.



This property produces the highly desirable deep valleys.

The gradient at any point (x, y) in an image can be found. Similarly, the Laplacian %f can also be
found. These two quantities may be used to form a three-level image, as follows:

0 EVf<T
s(x,y) ={+ ifVf>T and Vf=0
= if VfF>T and Vf <0

where the symbols 0, +, and - represent any three distinct gray levels, T is a threshold, and the
gradient and Laplacian are computed at every point (X, y). For a dark object on a light background,
the use of the Egn. produces an image s(x, y) in which (1) all pixels that are not on an edge (as
determined by being less than T) are labeled 0; (2) all pixels on the dark side of an edge are
labeled +; and (3) all pixels on the light side of an edge are labeled -. The symbols + and - in Eq.
above are reversed for a light object on a dark background. Figure 6.1 shows the labeling
produced by Eq. for an image of a dark, underlined stroke written on a light background.

The information obtained with this procedure can be used to generate a segmented,
binary image in which I's correspond to objects of interest and 0's correspond to the background.
The transition (along a horizontal or vertical scan line) from a light background to a dark object
must be characterized by the occurrence of a - followed by a + in s (X, y). The interior of the
object is composed of pixels that are labeled either 0 or +. Finally, the transition from the object
back to the background is characterized by the occurrence of a + followed by a -. Thus a
horizontal or vertical scan line containing a section of an object has the following structure:
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Fig.6.1 Image of a handwritten stroke coded by using Eq. discussed above

where (...) represents any combination of +, -, and 0. The innermost parentheses contain object
points and are labeled 1. All other pixels along the same scan line are labeled 0, with the exception
of any other sequence of (- or +) bounded by (-, 1482and (+, -).
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Fig.6.2 (a) Original image, (b) Image segmented by local thresholding.

figure 6.2 (a) shows an image of an ordinary scenic bank check. Figure
6.3 shows the histogram as a function of gradient values for pixels with gradients greater than 5. Note that this histogram
has two dominant modes that are symmetric, nearly of the same height, and arc separated by a distinct valley. Finally,
Fig. 6.2(b) shows the segmented image obtained by with T at or near the midpoint of the valley. Note that this example is
an illustration of local thresholding, because the value of T was determined from a histogram of the gradient and
Laplacian, which are local properties.
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Fig.6.3 Histogram of pixels with gradients greater than 5

Region based segmentation.

Region-Based Segmentation:

The objective of segmentation is to partition an image into regions. We approached this problem
by finding boundaries between regions based on discontinuities in gray levels, whereas
segmentation was accomplished via thresholds based on the distribution of pixel properties, such
as gray-level values or color.

Basic Formulation:

Let R represent the entire image region. We may view segmentation as a process that partitions R
into n subregions, R1, R 2..., Rn, such that
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@ R =R
i=1
(b) R;is a connected region,i = 1,2,..., n.
(©) RNR; = Dforalliandj,i # j.
@) P{R:) = TRUEBfori = 1.2,....n
() P(R;,UR;) = FALSE fori # j.

Here, P (Ri) is a logical predicate defined over the points in set Rj and @" is the null set. Condition
(a) indicates that the segmentation must be complete; that is, every pixel must be in a region.
Condition (b) requires that points in a region must be connected in some predefined sense.
Condition (c) indicates that the regions must be disjoint. Condition (d) deals with the properties

that must be satisfied by the pixels in a segmented region—for example P (Ri) = TRUE if all

pixels in Rj, have the same gray level. Finally, condition (c) indicates that regions Rj and Rj are
different in the sense of predicate P.

Region Growing:

As its name implies, region growing is a procedure that groups pixels or subregions into larger
regions based on predefined criteria. The basic approach is to start with a set of "seed" points and
from these grow regions by appending to each seed those neighboring pixels that have properties
similar to the seed (such as specific ranges of gray level or color). When a priori information is not
available, the procedure is to compute at every pixel the same set of properties that ultimately will
be used to assign pixels to regions during the growing process. If the result of these computations
shows clusters of values, the pixels whose properties place them near the centroid of these clusters
can be used as seeds.

The selection of similarity criteria depends not only on the problem under consideration, but also
on the type of image data available. For example, the analysis of land-use satellite imagery
depends heavily on the use of color. This problem would be significantly more difficult, or even
impossible, to handle without the inherent information available in color images. When the images
are monochrome, region analysis must be carried out with a set of descriptors based on gray levels
and spatial properties (such as moments or texture).

Basically, growing a region should stop when no more pixels satisfy the criteria for inclusion in
that region. Criteria such as gray level, texture, and color, are local in nature and do not take into
account the "history" of region growth. Additional criteria that increase the power of a region-
growing algorithm utilize the concept of size, likeness between a candidate pixel and the pixels
grown so far (such as a comparison of the gray level of a candidate and the average gray level of
the grown region), and the shape of the region being grown. The use of these types of descriptors
is based on the assumption that a model of expected results is at least partially available.

Figure 7.1 (a) shows an X-ray image of a weld (the horizontal dark region) containing several
cracks and porosities (the bright, white streaks running horizontally through the middle of the
image). We wish to use region growing to segment the regions of the weld failures. These
segmented features could be used for inspection, for inclusion in a database of historical studies,
for controlling an automated welding system, apg)fior other numerous applications.



Fig.7.1 (a) Image showing defective welds, (b) Seed points, (c) Result of region growing, (d)
Boundaries of segmented ; defective welds (in black).

The first order of business is to determine the initial seed points. In this application, it is known
that pixels of defective welds tend to have the maximum allowable digital value B55 in this case).
Based on this information, we selected as starting points all pixels having values of 255. The
points thus extracted from the original image are shown in Fig. 10.40(b). Note that many of the
points are clustered into seed regions.

The next step is to choose criteria for region growing. In this particular
example we chose two criteria for a pixel to be annexed to a region: (1) The absolute gray-level
difference between any pixel and the seed had to be less than 65. This number is based on the
histogram shown in Fig. 7.2 and represents the difference between 255 and the location of the first
major valley to the left, which is representative of the highest gray level value in the dark weld
region. (2) To be included in one of the regions, the pixel had to be 8-connected to at least one
pixel in that region.

If a pixel was found to be connected to more than one region, the
regions were merged. Figure 7.1 (c) shows the regions that resulted by starting with the seeds in
Fig. 7.2 (b) and utilizing the criteria defined in the previous paragraph. Superimposing the
boundaries of these regions on the original image [Fig. 7.1(d)] reveals that the region-growing
procedure did indeed segment the defective welds with an acceptable degree of accuracy. It is of
interest to note that it was not necessary to specify any stopping rules in this case because the
criteria for region growing were sufficient to isolate the features of interest.
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fig.7.2 Histogram of Fig. 7.1 (a)

Region Splitting and Merging:

The procedure just discussed grows regions from a set of seed points. An alternative is to
subdivide an image initially into a set of arbitrary, disjointed regions and then merge and/or split
the regions in an attempt to satisfy the conditions. A split and merge algorithm that iteratively
works toward satisfying these constraints is developed.

Let R represent the entire image region and select a predicate P. One approach for segmenting R is
to subdivide it successively into smaller and smaller quadrant regions so that, for any region R,

P(Ri) = TRUE. We start with the entire region. If P(R) = FALSE, we divide the image into
quadrants. If P is FALSE for any quadrant, we subdivide that quadrant into subquadrants, and so
on. This particular splitting technique has a convenient representation in the form of a so-called
quadtree (that is, a tree in which nodes have exactly four descendants), as illustrated in Fig. 7.3.
Note that the root of the tree corresponds to the entire image and that each node corresponds to a

subdivision. In this case, only R4 was subdivided further.

R ‘ R-

Fig. 7.3 (a) Partitioned image (b) Corresponding quadtree.

If only splitting were used, the final partition likely would contain adjacent regions with identical
properties. This drawback may be remedied by allowing merging, as well as splitting. Satisfying
the constraints, requires merging only adjacent regions whose combined pixels satisfy the
predicate P. That is, two adjacent regions Rj and R k are merged only if P (Rj U Rk) = TRUE.
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The preceding discussion may be summarized by the following procedure, in which, at any step
we

1. Split into four disjoint quadrants any region Rj, for which P (Ri) = FALSE.

2. Merge any adjacent regions Rj and Rk for which P (Rj U Rk) = TRUE.
3. Stop when no further merging or splitting is possible.

Several variations of the preceding basic theme are possible. For example, one possibility is to
split the image initially into a set of blocks. Further splitting is carried out as described previously,
but merging is initially limited to groups of four blocks that are descendants in the quadtree
representation and that satisfy the predicate P. When no further mergings of this type are possible,
the procedure is terminated by one final merging of regions satisfying step 2. At this point, the
merged regions may be of different sizes. The principal advantage of this approach is that it uses
the same quadtree for splitting and merging, until the final merging step.
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Digital image processing :Morphological operations

The term morphology is being used in a variety of streams like linguistics, biology, astronomy, mathematics, and it is also used with
prefixes like Geo-morphology, River morphology, urban morphology, etc. The term morphology used in image processing refers to the
tools which are developed using the theory developed as part of mathematical morphology.

In its most general form, the term morphology refers to a branch of biology

Morphology that deals with Form and Structure of animals and plants.
Mathematical The term has been used in mathematics where it deals with Form and
Morphology Structure of regions.

Morphology in
Image
Processing

In image processing the term morphology deals with developing tools for
extracting Form and Structure of image regions (objects).

Extraction of features from in image is the first step towards image analysis. Morphology plays an important role in image processing
because it can be used to develop techniques for feature extraction in binary images.

Morphological

Input Image — |i j| — Output Image

Tools
Image components generally used for describing region

shapes are:
« Boundaries
o Skeletons

« Convex Hulls
Morphological techniques are used for pre-processing and post-processing:

e toidentify and enhance useful features,
e todiscard (prune) noisy features.

Mathematical operations are applied to shapes/ objects. But how to represent shapes or objects in images?

Objects in Morphology

e Objects are represented as Sets.

4
e For binary images, each element of a set is (X;y) coordinates of white/ black pixel. These elements are €L (2-D integer space).
Note that we don't have to explicitly code the binary value as part of the pixel representation. Since there are only 2 possible

pixels (black or white) in the image, we can form a set of white pixels. All other pixels are implied to be black.

eZ3

e For grayscale images such sets are i.e. 3-D integer space. The first 2 integers in the 3-tuple are the x,y coordinates and the

third integer is the intensity value.

Morphology involves the use of subimages called as structuring elements. The pixels in a structuring element can have values 0 (black), 1
(white), or may even be don't care (either black or white). The structuring element is used to assess or probe the attributes and properties of
the images under study.

The origin of the structuring element is generally taken as the center of the rectangular array which contains the structuring element.
However the origin need not be specified as the center. Changing the origin of the structuring element also changes the output of the
morphological operations. 108



e We talk of morphological operations between WO image objects.

e The first one is the object/ region under study.

e The second one is an object (a subimage depicting a region) used to probe the first one to identify its structural characteristics.
e All sets are padded with background elements to form a rectangular array or to provide a background border.

The structuring element is also called as a mask or a kernel.

A A
Complement

Figure 1: Complement of a set
Translation and reflection are set operations which do not involve any structuring element. Translation of a set means that each element of

the set is displaced by a fixed translation distance. Reflection of a set means that the coordinate of each pixel will shift to the other side of
the axis. So x becomes - x and y becomes - y.

Reflection of a set

==}

The reflection of a set B is denoted as

B = {wjw=—b, for h& B}

i

Translation of a set The translation of a set B by s denoted as = "

(B)y={clc=b+z, for be B}

Set Intersection This is the traditional intersection of two sets. If the sets indicate image regions, then
their intersection would give the region overlap.

Set union
This is the traditional union of two sets. If the sets indicate image regions, then their

union would give the aggregate of the two regions.

The basic morphological operations which can be performed using a structuring element are erosion and dilation.
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Reflection

Figure 2: Reflection of a set.

"

zl

Figure 3: Translation of a set

Union

B

Figure 4: Union of two sets A and B

Alternatively it can be formulated as:
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ASB = {z| (B):NA°=2}

Erosion can be viewed as a morphological filtering operation. image details smaller than the structuring element B are filtered
out (removed) from the image.

Dilation of A by mask B

Figure 8: Dilation of a set A using structuring element B.

Dilation of a given set (equivalently the region) yields all the points where the origin of the structuring element can be placed while
satisfying the condition that there is some overlap of the
structuring element with the given region.

Erosion of a set shrinks it while dilation expands it. There exists a duality between erasion and dilation. If we erode a set and then take its
complement, the result will be the same as dilating the set's complement i.e. the background.

Dilation of a subimage(set) A, by a subimage(set) B is

/ _ - r
set of all displacements z, such that (B)., i.e 4B trapSlated"by z,
and A OVERLAP at at least one element.

As a result of dilation

(B)

e Extra elements are added to A i.e.it.grows (dilates) as long as overlaps with A.

e  The amount of dilation depends on the size of B. Larger the B — more dilation.

A@B = {z| (B),nA#0}
The dilation operation is denoted by the symbol D and defined as:

Alternatively it can be formulated as:
A®B = {z| [(B).nA]cA}

Dilation can be viewed as a morphological "reconstruction™ operation. image details smaller than the structuring element
B are filled-up in the image.

Analogy with convolution

e Dilation involves flipping B about its origin and then successively displacing it so that it slides over A.

e If SE is symmetric B=E 111



Duality between Erosion and Dilation

The erosion and dilation operations are dual of each other.

(ACB) =A°GE
(AGB)* =A°CB

Opening of a set by a structuring element yields all the points where the structuring element would overlap (encompass) while satisfying
the condition that the structuring element is completely within the set. Opening is performed by applying erosion followed by dilation.
Closing is performed by applying dilation followed by erosion.

We give here a comparison of the opening and closing operations.

Opening Closing
e Smooths contours of an image e Smooths sections of contours
e Fuses narrow breaks and long thin
e  Breaks narrow isthmuses gulfs
e Eliminates small holes and fills gaps in
e  Eliminates thin protrusions the contour.

A B

Opening of A by B

Figure 9: Opening of a set A using structuring element B.

2 bell B oan he bEpe G U emieny of A 2. Roll B on the outside of the boundary of A.

3. New boundary on A is defined by points on B which are

closest to the boundary of A. 3. New boundary on A is defined by points on B

which are closest to the boundary of A.

Consider the closing operation. Dilation expands a set and erosion shrinks it. It seems that the result will be the same as the
original set since we have applied two opposite operations. But this does not happen if the original set has got grooves or gulfs
which are smaller in size compared to the structuring element. Once the gulf gets filled up because of dilation, subsequent
erosion will not be able to reconstruct it.

DUALITY between opening and closing

Opening and closing are dual operations. Closing a set and then taking its complement will yield the same result as opening
the complement of the set with the same structuring element.
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(As B) = (A 0 B)

(Ao B)f = (A e B)

The opening operation satisfies the following properties:

Moving mask i
B over the Result of closing
periphery of A

Figure 10: Closing of a set A using structuring element B.

1 A°B g a subset (subimage) of A

2) If C is a subset of D, then E@8.js a subset of Do B
3) (AcBjoB=A<bB

The closing operation satisfies the following properties:
1) A is a subset (subimage) of AeB.

2) If C is a subset of D, then C* 8 s a subset of Deb

The Hit-or-Miss transform is used for detecting shapes. It uses two structuring elements.

1. The first one contains the foreground shape of the object which is to be detected.
2. The second structuring element contains the background shape around the object which is to be detected. It is like a window
frame (a thin strip of background) to the foreground in the first structuring element. The background pixels in this mask are
marked with foreground intensity and the object pixels with background intensity.

At any point on the given image,

if the foreground matches with the first structuring element

AND

if the complement (i.e. the background) matches with the second structuring element, then we can say that the object shape
exists at that point.

The set of points where a structuring element fits can be identified by eroding the given image with
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Figure 11: The set M is the union of sets AB, C, D, E, F, G. The object we want to detect is D. Hence we use a
structuring element which is same as D. The element W has been chosen slightly larger than D so that W - D gives a
thin strip of background surrounding set D.

the structuring element.

Mathematical formulation

Given a shape A with 3 components shapes C, D, E. What is the location of D?

e Step 1: Detect where shape D can be. We might detect larger shapes:in which D is contained.

e Step 2: Verify if background (fitting D) is present exactly around this shape.

Mathematically Hit-or-Miss transform is:

A®B = (ASD) N [A°c(W-D)
A®B = (AgaD) — [A@(fm}]

The procedure is illustrated in Fig 11 to 14.

Several features can be extracted from the image using the five basic morphological operations of dilation, erosion, opening, closing, and
hit-or-miss transform.
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CS 463 MODULE VI

Morphological Image Processing

o Morphology is concerned with image analysis methods whose
outputs describe image content (i.e. extract “meaning” from an
image).

o Mathematical morphology is a tool for extracting image
components that can be used to represent and describe region
shapes such as boundaries and skeletons.

o Morphological methods include filtering, thinning and pruning.
These techniques are based on set theory. All morphology
functions are defined for binary images, but most have natural

extension to grayscale images.

Basic Concepts of Set Theory
A set is specified by the elements between two braces: { }. The elements
of the sets are the coordinates (x,y) of pixels representing objects or other
features in an image.
Let A be a set in-2D image space Z

e |fa = (a1, ay)isanelement of A, thena € A

e |faisnotanelementof A, thena € A

e Empty set is a set with no elements and is denoted by @

e If every element of a set A is also an element of another set B, then

Ais said to be a subset of B, denoted as A € B

e The union of two sets A and B, denoted by C = AU B

e The intersection of two sets A and B, denotedby C = AN B

e Two sets A and B are said to be disjoint, if they have no common

elements. This is denoted by AN B = @

Page 1
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e The complement of a set A is the set of elements not contained in A.
This is denoted by Ac ={w |w & A}

e The difference of two sets A and B, denoted A — B, is defined as
A-—B={w|weAw€¢&B}=ANBe

e The reflection of set B, denoted B, is defined as

B ={w|w=—b, forb € B}

e The translation of set A by point z = (z1, z2), denoted (A); is

defined as (A),={c|c=a+ z, fora € A}

The figure below illustrates the preceding concepts.

AUB ANB

i

Figure 11.1 Basic concepts of Set Theory

(A).

Page 2
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Logic Operations Involving Binary Images
A binary image is an image whose pixel values are 0 (representing black)
or 1 (representing white, i.e. 255). The usual set operations of
complement, union, intersection, and difference can be defined easily in
terms of the corresponding logic operations NOT, OR and AND. For
example:

e |ntersection operation N is implemented by AND operation

e Union operation U is implemented by OR operation

The figure below shows an example of using logic operations to perform

set operations on two binary images.

a&hb alb a-b=a&hl’

Figure 11.2 Using logic operations for applying set operations on two binary images

Page 3
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Structuring Element

A morphological operation is based on the use of a filter-like binary
pattern called the structuring element of the operation. Structuring
element is represented by a matrix of Os and 1s; for simplicity, the zero
entries are often omitted.

Symmetric with respect to its origin:

Lines:
O,0]0] O 1 1
0O/,0|0] 1 0 1 1
ojo[1]J o] o] = (1] (1]
0O/1]01| 0 0 1 1
1/0[0] 0] o0 1
Diamond:
0 1 0
1[1]1
0O 1 0
Non-symmetric:
.. 1
1 11 11 Reflection 1 1
11 on origin 11 11 1
1 1

Dilation

Dilation is an operation used to grow or thicken objects in binary images.

The dilation of a binary image A by a structuring element B is defined as:
ADB={z:(B) NA+0}

This equation is based on obtaining the reflection of B about its origin

and translating (shifting) this reflection by z. Then, the dilation of A by B

Page 4
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Is the set of all structuring element origin locations where the reflected

and translated B overlaps with A by at least one element.

Example: Use the following structuring element to dilate the binary

image below.

1

1
1

Structuring element

Solution:

We find the reflection of B:

ADB=

OO, |kPr|Pr|O|O|O

ook, |kPr|Pr|O|lO|O

O|O0O|O|O|O|O|O|O|O

O|O0O|O|O|O|O|O|O|O

O|O0O|O|O|O|lO|O|O|O

O|0O|O|Rr|[kPr|IPIO|IO|O

0

0

O|0o|O|P,|(kP|IkP|IO|lO|O

O|0O|O|Rr|[kP|IP|IO|lO|O

O|lO|lO|Oo|OojlOo|O|O|O

OO0l 0O|O|O0O|O|O

OO0l 0O|O0O|O0O|O|O

Wo|lo|lo|lr,|R,r|R,R|O|O|O

In this case

o>

inary image

O|0O|O0O|O|0O|O|O|O|O

O|lRr|FRPIFRIOOOlO0O|O

O|lFRP|IFPIFPIPFPIOIOCIO|IOo

=l N N N k=1 k=1k=)

= N N N e L i k=1E=)

OlRr|Rr|IR|[kR|R|FLR|R|lO

Ol |Rr|IFR|[R|R|FR|RLR|lO

o|lo|rRr|kR|IRPR|ILR|IRLR|RL|O

o|lo|olRr|kR|kL|RL|RL|O

O|0O|0O|O0O|F|F|F|FL|O

O|0O|0O|O|O|FR ||, |O

O|0O|O0O|0O|O|O|O|O|O
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Dilation can be used for bridging gaps, for example, in broken/unclear

characters as shown in the figure below.

programs were written using
only two digits rather than
four to define the applicable
year. Accordingiy, the
company's seftware may
recognize a dats using 00"
as 1900 rather than the year
20060,

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the year
2000,

(b) (b)
Figure 11.3 (a) Broken-text binary image. (b) Dilated image.

Page 6
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Erosion

MODULE VI

Erosion is used to shrink or thin objects in binary images. The erosion of

a binary image A by a structuring element B is defined as:

ASB={z: (B),nAc+ @}

The erosion of A by B is the set of all structuring element origin locations

where the translated B does not overlap with the background of A.

Example: Use the following structuring element to erode the binary

image below.

1

Structuring
element

Solution

AOB=

OOk |PIO|O|O

OO,k |IPIO|O|O

O|O|O|O|O|lO|O|O|O

O|0O|0O|O|O|O|O|O|O

O|l0O|O0O|O|O|O|O|O|O

O|l0O|O|FR, (kPP O|O|O

OO,k |IO|O|O

0

0

O|0O|O|FR|(F,IFkP|IO|O|O

O|0O|O|FR|(Fk,|IFPIO|O|O

O|lO0O|O0O|O|O|O|O|O|O

O|O0|O0O|0O|O|O|O|O|O

O|0O|O0O|O|O|O|O|O|O

Binary image

O|lO|0O|0O|OojlOo|lO|O|O

O|lO|0O|O0O|OojlOo|O|O|O

OO0l OO0 O|O|O

O|l0O|0O|O|k,r|O|O|O|O

O|l0O|0O|O|k,r|O|O|O|O

O|l0O|0O|O|k,r|O|O|O|O

OO0 O|R,r|IOO|O|O

O|0|0|O|k,r|O|OC|O|O

OO0k, OO|O|O

OO0 0|0 O0O|O|O

OO0 0|0 O0O|O|O

OO0 0|0 O0|O|O
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Erosion can be used to remove isolated features (i.e. irrelevant detail)

which may include noise or thin edges as shown in the figure below.

(a) (b)
Figure 11.4 (a) Binary image. (b) Eroded image.

Combining Dilation & Eroesion - Opening Morphology

The opening operation erodes an image and then dilates the eroded image

using the same structuring element for both operations, i.e.
AeB=(AOB) DB

where A is the original image and B is the structuring element.

The opening operation is used to remove regions of an object that cannot

contain the structuring element, smooth objects contours, and breaks thin

connections as shown in the figure below.

Page 8
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(b)
. o (©) y .
Figure 11.5 (a) Original binary image. (b) Result of opening with square structuring element
of size 10 pixels. (¢) Result of opening with square structuring element of size 20 pixels.

The opening operation can also be used to remove small objects in an

image while preserving the shape and size of larger objects as illustrated

in the figure below.

(b)
Figure 11.6 (a) Original binary image. (b) Result of opening with square structuring element
of size 13 pixels.

Page 9
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Combining Dilation & Erosion - Closing Morphology

The closing operation dilates an image and then erodes the dilated image

using the same structuring element for both operations, i.e.
AeB=(A®B) OB

where A is the original image and B is the structuring element.

The closing operation fills holes that are smaller than the structuring

element, joins narrow breaks, fills gaps in contours, and smoothes objects

contours as shown in the figure below.

(@)

(b)
Figure 11.7 (a) Result of closing with square structuring element of size 10 pixels. (c) Result
of closing with square structuring element of size 20 pixels.

Combining Opening & Closing Morphology
Combining opening and closing can be quite effective in removing noise

as illustrated in the next figure.

Page 10

124



CS 463 MODULE VI

Figure 11.8 (a) Noisy fingerprint. (b) Result of opening (a) with square structuring element of
size 3 pixels. (c) Result of closing (b) with the same structuring element.

Note that the noise was removed by opening the image, but this process
introduced numerous gaps in the ridges of the fingerprint. These gaps can

be filled by following the opening with a closing operation.

Page 11
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Content Beyond syllabus

Convolutional neural networks: an overview

Key Points

« Convolutional neural network is a class of deep learning methods which has beco:me clz’omtzc.mt
in various computer vision tasks and is attracting interest across a variety of domains, including

radiology.

« Convolutional neural network is composed of multiple building blocks, such as ccgnvolut:‘on
layers, pooling layers, and fully connected layers, and is designed (o aur.omatzcally and
adaptively learn spatial hierarchies of features through a backpropagation algorithm.

What is CNN

CNN is a type of deep learning model for processing data that has arid pattern, such as images,
which is inspired by the organization of animal visual cortex 14] and designed to
automatically and adaptively learn spatial hierarchies os. from low- to high-level
patterns. CNN is a mathematical construct that is typicallyagomposed of three types of layers (or
building blocks): convolution, pooling, and fu players. The first two, convolution
and pooling layers, perform feature extraction, d, a fully connected layer, maps
the extracted features into final output, n. A convolution layer plays a key
role in CNN, which is composed of a
specialized type of linear operation.
dimensional (2D) grid, i.e., an array o
kernel, an optimizable feature extra
highly efficient for image proce i
layer feeds its output into the

ix.nages, pixel values are stored in a two-
ig. 2), and a small grid of parameters called

¢ a feature may occur anywhere in the image. As one
t layer, extracted features can hierarchically and progressively
become more complex. The process of optimizing parameters such as kernels is called trainin
which is performed so as to minimize the difference between outputs and ground truth labe;gs’.
through an optimization algorithm called backpropagation and gradient descent, among others

Fig. 1

B

syahiban + Ralll
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An overview of a convolutional neural network (CNN) architecture and the training process. A CN_N 5
composed of a stacking of several building blocks: convolution layers. pooling layers (e.2.. max PDOE”TS’)-
and fully connected (FC) layers. A model's performance under particular kernels and weights is
calculated with a loss function through forward propagation on a training dataset. and learnable
parameters, i.e., kernels and weights, are updated according to the loss value through backpropagation
with gradient descent optimization algorithm. ReLLU, rectitied linear unit

Building blocks of CNN architecture

The CNN architecture includes several building blocks, such as convolution layers, pooling
layers, and fully connected layers. A typical architecture consists of repetitions of a stack of
several convolution layers and a pooling layer, followed by one or more fully connected layers.
The step where input data are transformed into output through these layers is called forward
propagation (Fig. 1). Although convolution and pooling operations described in this section are
for 2D-CNN, similar operations can also be performed for three-dimensional (3D)-CNN.

Convolution layer

A convolution layer is a fundamental component of the:CNN architecture that performs feature
extraction, which typically consists of a combination of linear and nonlinear operations, i.e.,
convolution operation and activation function.

Convolution

Convolution is a specialized type of linear operation used for feature extraction, where a small
array of numbers, called a kernel, is-applied across the input, which is an array of numbers,
called a tensor. An elemént-wise product between each element of the kernel and the input tensor
is calculated at each locatien of the tensor and summed to obtain the output value in the
corresponding position of the output tensor, called a feature map (Iig. 3a—c). This procedure is
repeated applying multiple kernels to form an arbitrary number of feature maps, which represent
different characteristics of the input tensors; different kernels can, thus, be considered as
different feature extractors (Fig. 3d). Two key hyperparameters that define the convolution
operation are size and number of kernels. The former is typically 3 x 3, but sometimes 5 x 5 or
7 x 7. The latter is arbitrary, and determines the depth of output feature maps.

a—c An example of convolution operation with a kernel size of 3 * 3, no padding. and a stride of
L. A kernel is applied across the input tensor, and an element-wise product between each element
of the kernel and the input tensor is calculated at each location and summed to obtain the output
value in the corresponding position of the output tensor, called a [eature map. d Examples of
how kernels in convolution layers extract features from an input tensor are shown. Multiple
kernels work as different feature extractors, such as a horizontal edge detector (top), a vertical
edge detector (middle). and an outline detector (bottom). Note that the lefl image is an input,
those in the middle are kernels, and those in the right are output feature maps
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he convolution operation described above does not allow the center of each kernel to overlap the
outermost element of the input tensor, and reduces the height and width of the output feature map
compared to the input tensor. Padding, typically zero padding. is a technique to address this issue, where
rows and columns of zeros are added on each side of the input tensor, so as to fit the center of a kernel on
the outermost element and keep the same in-plane dimension through the convolution operation (Fig. 4).
Modern CNN architectures usually employ zero padding to retain in-plane dimensions in order to apply
more layers. Without zero padding, each successive feature map would get smaller after the convolution
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- : . b g ' ion. resulting in
feature patterns by down-sampling in conjunction \.'.nh d_poohnc% IOPt?t_‘I'z:ency by reducing
capturing an increasingly larger field of view. and (3) increasing mo el €

3 . . works.
the number of parameters to learn in comparison with fully connected neural net

NN model with regard to the convolution layer is 1o

As described later, the process of training a C ; e
a given training

: - . sel. mels are
identify the kernels that work best for a given task based on . datasgt Il'([?m -
the only parameters automatically learned during the training process In thf: Lon\-odu 1C 3 yer,
on the other hand. the size of the kernels, number of kernels. padding, an striae  are

hyperparameters that need to be set before the training process starts .
Nonlinear activation function

The outputs of a linear operation such as convolution are then passed through a nonlinear
activation function. Although smooth nonlinear functions. such as sigmoid or h_\‘pcrbolic tangent
(tanh) function, were used previously because they are mathematical representations of a
biological neuron behavior, the most common nonlinear activation function used presently is the
rectified linear unit (ReLU), which simply computes the funiction: f(x)=max(0,x) (Fig. ) [1, 3,
L?.s.l_salg}'

Fig. 5
(hReLE " / (b) sigmoid £31 . (<) tanh Voo L ——
J 1 #
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Activation functions commonly applied to neural networks: a rectified lin i
L : - ea
sigmoid, and ¢ hyperbolic tangent (tanh) r unit (ReLU), b

Pooling layer

A_ pooling layer provides a typical downsampling operation which reduces the in-pl

dlmen‘sionality of the feature maps in order to introduce a translation invariance to ‘ I::-phz.l?:
and dl‘storlions, and decrease the number of subsequent learnable parameters. It is sr;]a s Ih S
there is no learnable parameter in any of the pooling layers. whereas ﬁll{:;' .0, ']?tc'_ a:
padding are hyperparameters in pooling operations, similar to convolution Upt:rul?:;:: e

Muax pooling

The most popular form of pooling operation is max pooling, which extracts patches from the
input feature maps, outputs the maximum value in each patch. and discards all the other values

(Fig. 6). A max pooling with a fi T oy Rt M o
g. 0) pooling with a filter of size 2 * 2 with a stride of 2 is commonly used 1 practive
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Global average pooling

Another pooling operation worth noting is a global average pooling [20]. A global

pooling performs an extreme type of downsampling, where a feature map with size o
height x width is downsampled into a | * | array by simply taking the average ol all the elements
in each feature map, whereas the depth of feature maps is retained. This operation is typically
applied only once before the fully connected layers. The advantages of applying global average

pooling are as follows: (1) reduces the number of learnable parameters and (2) enables the CNN
to accept inputs of variable size.

averays

Fully connected layer

The output feature maps of the final convolution or pooling layer is typically flattened

, L.e.,
transformed into a one-dimensional (1D) arr

ay of numbers (or vector), and connected to one or
more fully connected layers, also known as dense layers, in which every input is connected to

every output by a learnable weight. Once the features extracted by the convolution |
downsampled by the pooling layers are created, they are mapped by.a‘subset of fully
layers to the final outputs of the network, such as the probabilities for each class in classification
tasks. The final fully connected layer typically has thessame number of output nodes as the
number of classes. Each fully connected layer isfollowed by a nonlinear function, such as ReLU,
as described above.

ayers and
connected

Last layer activation function

The activation function applied to.the last fully connected layer is usually different from the
others. An appropriate activation function™fceds to be selected according to cach task. An
activation function applied o thesmulticlass classification task Is a softmax function which
normalizes output real values from the last full

y connected layer to target class probabilities,
where each value ranges between Orand | and all values sum to 1.
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